Меню Рубрики

Механизированная сварка проволокой сплошного сечения в среде защитных газов

Механизированная сварка в среде защитных газов

Механизированной (полуавтоматической) дуговой сваркой называется дуговая сварка, при которой подача плавящегося электрода или присадочного металла или относительное перемещение дуги и изделия выполняется с помощью механизмов.

При механизированной сварке в качестве плавящегося электрода используется проволока сплошного сечения, порошковая и самозащитная порошковая проволока. В случае применения проволоки сплошного сечения или порошковой проволоки для защиты сварочной дуги и наплавленного металла применяются защитные газы. Защитный газ, обтекая зону дуги, защищает её от окружающей среды. При отсутствии специальных защитных мер химический состав и механические свойства наплавленного металла резко ухудшаются. Теплотой дуги расплавляется основной и присадочный металл. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. Схема подачи защитного газа показана на рис. 1.

Рис. 1. Схема подачи защитного газа в зону сварки: 1 — сопло; 2 — электрод; 3 — зона дуги; 4 — защитный газ; 5 — расплавленный металл сварочной ванны; 6 — свариваемое изделие

Сварка в среде защитных газов согласно AWS АЗ.О «Термины и определения» обозначается как GMAW — gas metal arc welding.

В качестве защитных газов применяют инертные (аргон и гелий) газы. Данный вид сварки обозначается как MIG (metal inert gas). А также активные (углекислый газ, водород, кислород и азот) газы или их смеси (Аг + Не, Аг + С02, Аг + 02, СОг + 02 и др.). Данный вид сварки обозначается как MAG (metal active gas). Выбор защитного газа зависит от свариваемого материала и применяемого электрода.

В инертных газах (аргоне, гелии) и их смесях сваривают нержавеющие, жаропрочные и другие стали, цветные металлы (титан, никель, медь, алюминий). Инертные газы не взаимодействуют с расплавленным металлом и его окислами, они только защищают зону дуги и жидкую сварочную ванну от кислорода и азота воздуха.

Сварка в инертных газах применяется в тех случаях, когда сварка другими методами дает худшие результаты или вообще не может быть использована.

Механизированная дуговая сварка в среде С02 плавящимся электродом относится к MAG сварке, получила широкое распространение в промышленности при сварке углеродистых, низколегированных и других сталей.

Наибольшее применение сварка в С02 нашла в судостроении, машиностроении, строительстве трубопроводов, при выполнении монтажных работ, изготовлении котлов и аппаратуры различного назначения и т.д.

  • — высокая производительность сварки, которая достигается вследствие хорошего использования тепла сварочной дуги;
  • — высокое качество сварных швов;
  • — возможность сварки в различных пространственных положениях с применением полуавтоматической и автоматической сварки;
  • — низкая стоимость защитного газа;
  • — возможность сварки на весу без подкладки.
  • — требуется менее квалифицированный персонал по сравнению с ручной сваркой.

Какие факторы влияют на степень окисления:

При сварке в среде СO2 под воздействием высокой температуры дуги молекулы СO2 диссоциируют полностью по реакции:

Поэтому при сварке в среде СO2 происходит окисление атомов элементов (С , Fe, Mn , Si и др.), содержащихся в электродной проволоке и в основном металле.

Выделение газообразной окиси углерода из жидкого металла вызывает «кипение» сварочной ванны и приводит к образованию пор.

Для повышения количества марганца и кремния в металле шва, уменьшающегося в результате угара, и подавления реакции окисления углерода при сварке в углекислом газе применяют электродную проволоку с повышенным содержанием марганца и кремния.

На степень окисления углерода, кремния и марганца при сварке в углекислом газе влияют: напряжение, величина и полярность сварочного тока, а также диаметр электродной проволоки. С повышением напряжения окисление увеличивается, а при возрастании сварочного тока и уменьшении диаметра проволоки (повышении плотности тока) — уменьшается. Сварка на постоянном токе обратной полярности дает меньшее окисление, чем на токе прямой полярности. При сварке проволокой диаметром 0,5 — 1,0 мм происходит значительно меньшее окисление элементов, чем при сварке проволокой больших диаметров. Поэтому более тонкая проволока обеспечивает получение плотных швов.

источник

Механизированная и автоматическая сварка в защитных газах проволокой сплошного сечения

9.1.9 Механизированная сварка проволокой сплошного сечения в среде защитных газов или смеси защитных газов применяется для сварки корневого слоя шва неповоротных стыков труб диаметром от 100 до 1400. Для механизированной сварки применяются агрегаты/установки, укомплектованные механизмами подачи сварочной проволоки, сварочными горелками, газовыми рампами.

9.1.10 Механизированная импульсно-дуговая сварка корневого слоя шва проволокой сплошного сечения в среде защитных газов производится с применением специальных источников сварочного тока, обеспечивающих импульсно-дуговой режим механизированной сварки, регламентированный технологической инструкцией.

9.1.11 Автоматическая сварка в среде защитных газов проволокой сплошного сечения применяется для сварки заполняющих и облицовочных слоев неповоротных стыков труб диаметром от 100 до 1400. Автоматическая сварка выполняется со свободным или принудительным формированием обратного валика.

9.1.12 Применяемые сварочные проволоки должны быть аттестованы в соответствии с 9.8 настоящего свода правил.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8472 — | 7354 — или читать все.

85.95.178.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Механизированная сварка в среде углекислого газа

Сущность способа сварки в среде углекислого газа. Сварка в среде углекислого газа (СО2) является разновидностью дуговой сварки. Схема сварочного процесса приведена на рис. 10.9.

Рис. 10.9. Способ сварки в среде СО2

1 – сварочная проволока; 2 – токоведущий мундштук; 3 – сопло; 4 – струя защитного газ; 5 – сварочная дуга; 6 – сварочная ванна; 7 – шов

Сварка производится голой сварочной проволокой диаметром 1,4…2 мм, которая подается через токоведущий мундштук. В зону сварки через сопло поступает углекислый газ, струя которого, обтекая сварочную дугу и сварочную ванну, предохраняет расплавленный металл от воздействия атмосферного воздуха.

Электродная проволока подается непрерывно в зону сварки со скоростью плавления. Сварочная горелка перемещается вдоль свариваемых кромок, в результате чего совершается процесс сварки с образованием шва. Сварку производят на постоянном токе обратной полярности (плюс на электроде).

Различают механизированную и автоматическую сварки. В первом случае механизирована подача проволоки, а горелка перемещается сварщиком вручную. В случае автоматической сварки механизированы подача проволоки и перемещение сварочной горелки.

Углекислый газ является химически активным газом, поэтому для сварки применяют проволоку марок Св-08Г2С или Св-08ГС, содержащих в своем составе раскислители кремний и марганец.

Основные достоинства сварки в среде СО2:

– обеспечивает получение высококачественных сварных соединений из различных металлов при высокой производительности по сравнению с ручной дуговой сваркой благодаря применению высокой плотности тока (100…200 А/мм 2 );

– высокое качество сварного шва;

– в отличие от сварки под слоем флюса возможно визуальное наблюдение за процессом горения дуги и образования шва, что особенно важно при механизированной сварке;

– в отличие от сварки под слоем флюса не требует приспособлений для удержания флюса, поэтому возможна сварка как нижних, так и вертикальных и горизонтальных швов.

К недостаткам следует отнести возможность сдувания струи газа ветром или сквозняком, что ухудшает защитное действие газа и качество шва; необходимость защищать рабочих от излучения дуги и от опасности отравления при сварке в замкнутом пространстве. Кроме того, сварка в углекислом газе возможна только при постоянном токе и дает менее гладкую поверхность шва, чем сварка под флюсом.

Оборудование поста для сварки в среде углекислого газа. Для механизированной сварки в среде углекислого газа применяются полуавтоматы отечественного производства марок ПДГ-516, ПДГ-508, ПДГ-415, ПДГ-252 и др., а также полуавтоматы зарубежных фирм. Сварочные полуавтоматы имеют в своем составе примерно одинаковые функциональные блоки и отличаются друг от друга лишь мощностью и конструктивным исполнением. В качестве примера представлен пост механизированной сварки в углекислом газе полуавтоматом ПДГ-516, блок-схема которого представлена на рис. 10.10.

Сварочная проволока подается в зону сварки подающим механизмом, состоящим из двигателя постоянного тока, редуктора и двух пар роликов-шестерен с гладкими коническими канавками. Рычажным механизмом верхние ролики прижимаются к нижним. Сварочная проволока из кассеты подается роликами-шестернями через шланг в сварочную горелку. Сюда же подаются сварочный ток через кабель от выпрямителя и углекислый газ из баллона с углекислотой. Для сварки в углекислом газе используются выпрямители с жесткой внешней характеристикой марок ВС-300, ВДГ-301 и др. (в процессе сварки напряжение на дуге постоянно и не зависит от величины сварочного тока) или универсальные выпрямители ВДУ-504, ВДУ-506.

Рис. 10.10. Блок-схема полуавтомата для сварки в среде СО2:

1 – сварочная горелка; 2 – механизм подачи электродной проволоки;

3 – кассета с электродной проволокой; 4 – сварочные кабели; 5 – баллон

с углекислотой; 6 – подогреватель газа; 7 – редуктор-расходомер; 8 – кабель

управления; 9 – сварочный выпрямитель; 10 – осушитель газа

В баллоне сварочная углекислота находится в жидком состоянии. После испарения углекислый газ проходит через подогреватель, редуктор-расходомер, электрогазовый клапан и поступает в сварочную горелку. В случае применения несварочной (пищевой) углекислоты, с повышенным содержанием влаги, в газовую магистраль дополнительно включают осушитель. Испарение углекислоты проходит с поглощением тепла. Подогреватель повышает температуру углекислого газа, предотвращая замерзание редуктора. Редуктор-расходомер обеспечивает снижение давления газа до рабочего значения и контроль его расхода в процессе сварки.

Электрогазовый клапан представляет собой исполнительный механизм, открывающий и закрывающий подачу газа в сварочную горелку.

Блок управления сварочным полуавтоматом (БУСП) с электрогазовым клапаном расположен сзади подающего механизма и обеспечивает выполнение следующих операций:

– включение и выключение электрогазового клапана (выключение выполняется с регулируемой задержкой 1…5 с, что обеспечивает защиту жидкого металла вплоть до его затвердевания);

– включение и выключение электродвигателя подачи проволоки (скорость подачи проволоки регулируется резистором на панели блока управления);

– включение и выключение сварочного выпрямителя (выключение выполняется с регулируемой задержкой 0,5…3 с, что обеспечивает заварку кратера).

При нажатии выключателя на сварочной горелке происходит включение газового клапана и подача газа в зону сварки. Через 1 с включаются источник питания сварочной дуги и привод подачи электродной проволоки. При замыкании сварочной проволоки на изделие зажигается дуга.

При размыкании выключателя останавливается двигатель подачи электродной проволоки, происходит растяжка дуги и ее обрыв. Через 0,5…3 с выключается источник питания и через 1…5 с – газовый клапан (снимается напряжение со сварочной горелки и прекращается подача газа). Следующее включение происходит при нажатии кнопки на сварочной горелке.

Технические характеристики полуавтомата для сварки в углекислом газе ПДГ-516 с ВДУ-506 представлены в табл. 10.4.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8441 — | 8048 — или читать все.

85.95.178.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Технология механизированной сварки плавящимся электродом в среде активных газов и смесях (МП)

9.5.1 Механизированная сварка проволокой сплошного сечения в среде углекислого газа с управляемым переносом капель через дуговой промежуток (STT, УКП ,ВКЗ) реализуется с помощью специализированных источников сварочного тока, обеспечивающих изменение сварочного тока и напряжения по определенному алгоритму и предназначена для сварки корневого слоя сварных соединений труб диаметром от 100 до 1220 мм с толщинами стенок от 3 до 32 мм. Алгоритм изменения сварочного тока определяет название процесса, в настоящее время наибольшее распространение получили процессы:

В состав оборудования входят:

— специальный источник питания;

— механизм подачи проволоки;

— газовый баллон с редуктором, расходомером и подогревателем газа;

9.4.3.1 В качестве защитного газа следует применять 100 % углекислый газ высшего сорта по ГОСТ 8050.

9.4.3.2 Сварка осуществляется способом сверху-вниз на постоянном токе обратной полярности.

9.4.3.3 Способ сварки может быть использован для выполнения корневого слоя шва при специальных сварочных работах – сварке разнотолщинных соединений, захлестов, соединений труба-фитинг и труба-запорная арматура.

Технология механизированной сварки проволокой сплошного сечения в среде углекислого газа методом STT

9.5.2.1 Расход газа при выполнении сварки должен составлять 10-16 л/мин.

9.5.2.2 Вылет электродной проволоки при сварке должен составлять от 10 до 15 мм. Допускается вылет до 20 мм.

9.5.2.3 В положении 0.00-1.00 (1.30) час сварка осуществляется с небольшими поперечными колебаниями без задержки на кромках. В положении 1.00 (1.30) – 6.00 час сварка осуществляется без поперечных колебаний.

9.5.2.4 Режимы сварки корневого слоя шва представлены в таблице 9.26.

9.5.2.5 Значение параметра горячего старта 1,5-3,0.

Таблица 9.26 – Параметры режимов при механизированной сварке методом STT проволокой диаметром 1,14 мм

Наименование слоя Параметры процесса
Скорость подачи проволоки, дюйм/мин Пиковый ток, А Базовый ток, А Длительность заднего фронта импульса
Корневой от 90 до 120* от 120 до 160** от 400 до 420 от 45 до 55
* Для сварки в положении 12.00-1.00 час. ** Для сварки в положении 1.00-6.00 час.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9414 — | 7314 — или читать все.

85.95.178.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Технология и режимы механизированной сварки в среде защитных газов

При сварке судостроительных сталей в качестве защитного газа применяют углекислый газ (СО2). Механизированную сварку можно осуществлять тонкой электродной проволокой (dэ = 0,8 – 1,8мм) во всех пространственных положениях с использованием полуавтоматов типа А-547Р, ПДПГ-300, «Гранит», «Нева». Сварку проводят с применением сварочной проволоки марок Св-08ГС или Св-08Г2С.

Подготовку кромок при сварке проволокой dэ = т0,8 – 1,2 мм производят как для РДС, т.е. по ГОСТ РФ 5264-69, а при сварке проволокой dэ = 1,6 – 2,0 мм, как для сварки в защитных газах, т.е. по ГОСТ РФ 14771-69. Ориентировочные рекомендации по выбору режимов сварки приведены в [ ].

Технология сварки меди и её сплавов.Медь на судостроительных заводах сваривали угольным электродом или с помощью газового пламени. Если завод располагал соответствующими установками, для сварки меди предпочитают использовать метод аргонно-дуговой сварки неплавящимся (вольфрамовым) электродом. Основное осложнение при сварке меди связано с высокой её теплопроводностью, низкими механическими свойствами при высоких температурах и интенсивным окислением и засорением сварочной ванны закисью меди (Сu2О). Закись меди в смеси с медью залегает ме6жду зёрнами основного металла, образуя хрупкие прослойки, по которым и происходит разрушение; сварное соединение становится склонным к трещинообразованию. Процесс сварки может быть осложнён также и тем, что расплавленная медь хорошо растворяет газы. В процессе поглощения расплавленной медью водорода и окиси углерода, находящихся в восстановительной зоне газового пламени или в зоне угольной дуги, в сварочной ванне могут происходить различные реакции – водород активно растворяется не только в жидкой, но и в твёрдой меди. При наличии в твёрдой меди участков Сu2О, диффузионно-подвижный водород реагирует с ней. Образовавшийся водяной пар скапливается, создавая давление, которое и приводит к образованию многочисленных трещин.

Наиболее просто и легко медь сваривают аргонно-дуговой сваркой. При этом требуется тщательная очистка кромок и присадочного металла и применения чистого аргона. Сварку ведут на постоянном токе при прямой полярности. Присадка – бронза типа Бр. Х-0,3 или Бр. КМц-3-1. Во избежание растекания металла сварочной ванны, сварку ведут на графитовой подкладке без перерывов со скоростью не меньше 0,25 м/мин. Для газовой сварки применяют горелки с большим расходом ацетилена – 150-200 л/ч на 1 мм толщины листа. Медь также можно сваривать специальными электродами «Комсомолец».

Сварка латуней и бронз. При сварке латуней основные затруднения связаны с выгоранием цинка, так как температура плавления латуней обычно лежит в пределах 800-950 о С, а цинк плавится при 419 о С и кипит при 906 о С. Часть цинка испаряется в виде паров металла и в воздухе окисляется, образуя ядовитые пары ZnО; В шве количество цинка уменьшается и образуются пустоты (поры).

Затруднения при сварке оловянистых бронз связаны с выгоранием олова и образованием двуокиси олова (SnО2), с повышением хрупкости таких бронз при нагреве, а при сварке алюминиевых бронз – с образованием тугоплавких окислов алюминия (Аl2О3). Кремнистые бронзы свариваются легко.

Как латуни, так и бронзы можно сваривать газовой и электродуговой сваркой (угольные и металлические электроды). Сварку латуней и бронз следует вести с подогревом особенно начальных участков шва (до 200 – 300 о С), что ускоряет процесс и позволяет обеспечить скорость, превышающую 0,25 м/мин. Сварку производят с применением флюса на основе буры и борной кислоты. Газовую сварку латуни выполняют окислительным пламенем (О22H2 о С), который, образуясь на поверхности сварочной ванны, препятствует сплавлению, а также может засорять металл шва и резко снижать прочность соединения. Кроме того, алюминий имеет значительную ус адку (7%) и малую прочность при повышении температуры выше 450 о С, вследствие чего расплавленный алюминий в районе шва может «провалиться» под влиянием собственного веса. Контролировать же нагрев алюминия трудно, так как он не меняет своего цвета. Поэтому иногда под шов рекомендуют подкладывать фиксирующую планку. Из-за высокой теплопроводности алюминия сварку обычно ведут с предварительным подогревом металла в начале шва (100-150 о С). Свариваемые кромки перед сваркой тщательно очищают от плёнки окислов механическим способом и обезжиривают содовым раствором.

Дуговую сварку ведут на постоянном токе: при угольных электродах на прямой полярности, а пари металлических – на обратной полярности. Институт электросварки им. Патона разработал способ автоматической сварки алюминиевых сплавов под слоем флюса АН-А1, в состав которого входят КСl и Nа3АlF6.

Сварку ведут автоматами электродной проволокой диаметром 1-5 мм марки АМг6, при силе тока 300-600А и напряжении на дуге 34-48 В.

Наиболее универсальным способом сварки алюминия и его сплавов является способ аргонно-дуговой сварки неплавящимся (вольфрамовым) электродом, либо плавящимся электродом (проволока того же состава, что и основной металл). Сварку производят плавящимся электродом (проволокой) на постоянном токе при обратной полярности. При аргонно-дуговой сварке необходимо также производить тщательную зачистку свариваемых кромок деталей. В качестве защитного газа следует применять чистый аргон марок А и Б. Полуавтоматическую и ручную сварку в среде аргона плавящимся и неплавящимся электродами можно производить в любом пространственном положении. Для судостроения рекомендуются автоматы и полуавтоматы АДПГ, ПДА-300, ПШП-10 и др. Режимы сварки плавящимся электродом в среде аргона рекомендуется выбирать по таблицам работы [4].

Технология сварки титана и его сплавов.Лёгкие, высокопрочные и коррозионностойкие сплавы титана всё шире начинают применять в судостроении.

С точки зрения сварки для титана характерна очень высокая химическая активность; так при нагреве, начиная с температуры 400 о С, а особенно интенсивно от 600 0 С, металл активно реагирует со всеми газами, кроме инертных, при температуре плавления металл активно растворяет многие газы, включая азот, водород, пары воды, окись и двуокись углерода и т.п. и реагирует с ними. В тоже время наличие небольших включений указанных газов, существенно снижает механические свойства металла и, в частности, резко ухудшает пластические свойства. Доброкачественное сварное соединение можно получить только при условии, если ограничить содержание в шве примесей азота, кислорода, водорода и углерода, обеспечив надёжную защиту сварочной ванны, металла шва и ЗТВ инертными газами (аргон, гелий), с которыми титан не вступает во взаимодействие.

В ряде случаев пригодность титана для сварки предварительно оценивают по величине расчётной твёрдости НВ, определяя её по эмпирической формуле

НВ = 40 + 310√ Оэ , 7.8.

Где Оэ – эквивалентное содержание кислорода.

Его, в свою очередь, определяют по формуле

Где О2, N2, C — процентное содержание в титане соответственно кислорода, азота и углерода.

В том случае, если НВ 0 С) не только с лицевой поверхности свариваемых листов, но и с обратной стороны шва (сварка с обратным поддувом газа). Практически это осуществляется с помощью горелок, имеющих специальные «приставки» для дополнительной подачи защитного газа и дополнительную трубную подкладку для подачи защитного газа с обратной стороны. Длина приставки на грелках может достигать 400-500 мм. В качестве защитного газа могут быть использованы аргон или гелий (Рис.7.4.)

В институте электросварки им. Патона был разработан процесс автоматической сварки под флюсом и ЭШС титана. Рекомендовано использовать бескислородные флюсы АН-Т1 и АН-Т2. Сварку титана под флюсом производят на обычном оборудовании, на постоянном токе (обратная полярность). На некоторых судостроительных предприятиях сварку конструкций из титана производят в специальных камерах, заполненных аргоном, соблюдая при этом все меры техники безопасности и охраны труда работающих.

Сварка разнородных материалов.При сварке разнородных материалов возникают определённые трудности:

1. При большом различии в температурах плавления (момент достижения одним материалом Тпл, другой материал находится в твёрдом состоянии);

2. Различия в коэффициентах линейного расширения α у свариваемых материалов вызывают повышенные термические напряжения;

3. Различия теплопроводности и теплоёмкости ведёт к изменению температурных полей и плюс условий кристаллизации металла шва;

4. Резкое различие в электромагнитных свойствах ведёт к неудовлетворительному формированию шва;

5. Наличие окисных плёнок, наличие различных включений в металле шва;

Решающее значение на процесс получения сварного соединения оказывает металлургическая совместимость, т.е. взаимная растворимость соединяемых металлов и в жидком и в твёрдом состоянии.

Существуют различные способы сварки разнородных материалов на примере сварки стали с медью и её сплавами (латунь, бронза):

— соединение разнородных металлов в твёрдом состоянии – сварка давлением (холодная, прессовая, трением, диффузионная, УЗС, взрывом и др.);

— соединение сваркой плавлением и наплавкой – дуговой способ (сварка в защитных газах, под флюсом, плазменно-дуговая, ЭШС, лазерная и др.);

— контактная сварка – машины типа МТП-К1;

— диффузионная сварка в вакууме;

— сварка и наплавка трением – станки типа МСТ-23, МСТ – 2001.

Сварка пластмасс.В машиностроении в настоящее время используется 1/3 всех выпускаемых в РФ полимерных материалов (подшипники скольжения, зубчатые и червячные колёса, детали тормозных устройств, кузова автомобилей, катера, яхты, протезы и др. медицинское оборудование). Вот некоторые достоинства полимеров:

— малый удельный вес ( 1 – 1,6 г/см 3 );

— не подвержены электрохимической коррозии;

— высокая удельная прочность;

— плохо проводят тепло и др.

Наличие вот таких свойств, приводит к определённым трудностям при сварке пластмасс:

1. Длительная выдержка при высоких температурах вызывает термическое разложение пластмасс (деструкция);

2. Многие пластмассы ( ПМ) не имеют чётко выраженной температуры плавления;

а) сварка газовыми теплоносителями – применяют присадочные прутки диаметром 2, 3 и 4 мм. (более пластифицированы, чем основной материал); используют электрические горелки с напряжением меньше 36 в., а также газовые горелки типа ГГП-1-56 ( Т 0 С выхода газов ≈ 300 0 С);

б) сварка нагретыми инструментами ( установки типа МСП-4);

д) ультразвуковая сварка ( установки типа УПТ-14, УПК-15 и др.);

е) ядерная сварка ( состоит в облучении пластмасс потоком нейтронов – слой лития или бора облучают нейтронами).

Охрана труда при проведении сварочных работ.При сварке, а также при газопламенной обработке имеются профессиональные опасности и вредности, а также источники возможного травматизма, действие которых необходимо учитывать при организации работ. Все рабочие должны быть тщательно проинструктированы безопасным методам выполнения работ. Приводим специфические источники опасности при электрической сварке.

Источники электрического тока.Кожный покров человека, в особенности в сухом состоянии, оказывает значительное сопротивление прохождению тока. Расчётное сопротивление человека – 1000 Ом. Безопасным для жизни, вызывающим болезненное ощущение считается ток 0,03 – 0,05 А. Следовательно предельным безопасным напряжением можно считать: Uпред = I R = 0,05 · 1000 = 50 В.

Однако при влажной коже сопротивление резко снижается и даже при таком напряжении ток, протекающий через тело человека, может превысить безопасную величину.

Токоведущие части оборудования – кабели и ручки электрододержателей должны быть изолированы.

Для электросварочных установок напряжение холостого хода (Uхх) допускается до 80 В. Обязательно установки должны быть заземлены.

Нагретый металл, капли и брызги металла. Одежда сварщика должна быть из плотной негорючей ткани, не имеющей складок, открытых карманов или разрезов, куда могли бы попасть брызги и расплавленные капли. При сварке обязательное ношение головного убора и плотных брезентовых рукавиц. Вблизи сварки не должно быть горючих материалов, красок, стружки или баллонов с газами (ацетилен, кислород и др.).

Пыль и вредные газы.Образуются при горении дуги и расплавлении металла, которые могут попасть в организм человека. Главным средством борьбы с запылённостью при сварке является устройство вытяжной вентиляции – общеобменной и местной.

Лучистая энергия, выделяемая дугой.В спектре её содержаться инфракрасные видимые и ультрафиолетовые лучи. Яркость света сварочной дуги превышает в 16000 раз максимальную яркость допускаемую для незащищённого глаза. Поэтому при сварке необходимо пользоваться стеклянным светофильтром с очень малой прозрачностью.

Охрана труда работающего персонала является важной обязанностью руководителей сварочного производства.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Механизированная сварка проволокой сплошного сечения в углекислом газе

7.54. Механизированной сваркой в углекислом газе можно сваривать стыки труб из углеродистых и низколегированных сталей, а также обшивку котлов. Сварку труб ведут на остающихся подкладных кольцах или без них (см. приложение 8). При сварке без остающихся подкладных колец трубопроводов с толщиной стенки 1 мм и более корень шва необходимо выполнять аргонодуговой сваркой неплавящимся электродом.

7.55. Сборку и приварку стыков следует выполнять с соблюдением требований приведенных в разделе 6.

Необходимость и температуру подогрева необходимо определять в соответствии с данными табл. 9.

7.56. Прихваточные швы при сборке можно выполнять механизированной сваркой в углекислом газе или ручной дуговой сваркой электродами диаметром не более 3 мм.

Марку электродов и присадочной проволоки выбирают по марке основного металла в соответствии с требованиями табл. 1 и 3.

7.57. На стыках труб, собираемых без подкладных колец, число и размер прихваток должны соответствовать приведенным в табл. 10.

7.58. Неповоротные вертикальные стыки труб следует сваривать в последовательности, приведенной в п.п.7.17-7.18.

В вертикальных стыках без подкладного кольца корневой слой необходимо накладывать по схеме, приведенной на рис. 24.

Рис. 24. Последовательность наложения корневого слоя в неповоротном стыке
без подкладного кольца

7.59. Сварку неповоротного вертикального стыка выполняют при положении горелки «углом вперед» (рис. 25).

Рис. 25. Положение горелки при механизированной сварке
в углекислом газе вертикального неповоротного стыка

7.60. Горизонтальные неповоротные стыки труб сваривают в последовательности, указанной в п.п. 7.19, 7.20.

7.61. Высота (толщина) слоя или валика должна быть 5-6 мм. Примерное расположение слоев и валиков в поперечном сечении шва приведено на рис. 26.

Рис. 26. Примерное расположение слоев и валиков по сечению шва вертикального (а)
и горизонтального (б) стыков труб с разделкой С19 (угол скоса 15ºС)
1-20 последовательность наложения участков шва

7.62. Неповотные вертикальные стыки труб диаметром до 219 мм следует сваривать на режиме:

Напряжение дуги, В 19-20
Ток, А 120-140
Диаметр проволоки, мм 1,2
Расход углекислого газа, л/ч 900-1200

Неповоротные вертикальные стыки диаметром более 219 мм сваривают два сварщика. Режимы сварки:

Диаметр проволоки, мм 1,2
Расход углекислого газа, л/ч 900-1200
Напряжение дуги, В 19-20
Ток, А 120-140
Напряжение дуги, В 20-22
Ток, А 140-180

7.63. Для сварки следует применять сварочную проволоку Св-08Г2С.

7.64. Перед возбуждением дуги зону сварки обдувают углекислым газом. Расстояние от сопла до поверхности трубы должно быть не более 25 мм.

7.65. Сварку выполняют короткой дугой.

В процессе сварки рабочий по возможности не должен обрывать дугу. В случае обрыва дуги кратер и прилегающий к нему участок шва на расстоянии не менее 15 мм должен быть очищен от шлака. Возбуждение дуги после перерыва следует производить на ранее заваренном участке шва, на расстоянии 10-15 мм от кратера.

7.66. По окончании сварки обрывать дугу следует только после заполнения кратера. Кратер необходимо обдувать углекислым газом в течении 5-10 с, пока не застынет металл.

Сварка разнородных сталей

7.67. В данном подразделе даются общие рекомендации по сварке стыков труб из сталей разного либо одного структурного класса, но разных марок. Сварку таких стыков следует выполнять ручным дуговым или аргонодуговым способом с соблюдением технологических требований, изложенных в данном разделе (в соответствующих подразделах см. п.7.11-7.21, 7.38-7.53).

7.68. Конструкцию сварного соединения следует выбирать из приложения 8.

7.69. Если стык сваривают на остающемся подкладном кольце, то оно изготавливается из менее легированной стали или из стали того же структурного класса, к которому принадлежит металл корня шва.

7.70. Марку присадочного металла (электродов и проволоки) выбирают по табл. 14.

Сталь свариваемых труб Электроды* Проволока*
Ст2, Ст3, 08, 10, 20, + 15Гс, 16ГС, 17ГС, 17Г1С УОНИ-13/45, УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-10 Св-08Г2С, (Св-08ГС)
08, 10, 20, 15ГС, 16ГС, 17ГС + 12МХ, 15ХМ, 12Х1МФ УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-10 Св-08Г2С, (Св-08ГС)
12МХ, 15ХМ + 12Х1МФ ТМЛ-1У (ЦЛ-39, ТМЛ-3У, ЦЛ-20) Св-08ХМ, Св-08МХ, Св-08ХГСМА (Св-08ХМФА)

* Марки, указанные в скобках, можно применять при отсутствии основных марок, обеспечивающих более высокое качество соединения

7.71. Необходимость предварительного подогрева стыков из разнородных сталей следует определять в соответствии с требованиями, приведенными в табл. 9. При этом режим подогрева должен соответствовать режиму для более легированной из свариваемых сталей. Необходимость и режим термообработки этих соединений определяется из табл. 15.

источник

Adblock
detector