Меню Рубрики

Механизированная сварка в смеси защитных газов

Механизированная сварка в среде защитных газов

Механизированной (полуавтоматической) дуговой сваркой называется дуговая сварка, при которой подача плавящегося электрода или присадочного металла или относительное перемещение дуги и изделия выполняется с помощью механизмов.

При механизированной сварке в качестве плавящегося электрода используется проволока сплошного сечения, порошковая и самозащитная порошковая проволока. В случае применения проволоки сплошного сечения или порошковой проволоки для защиты сварочной дуги и наплавленного металла применяются защитные газы. Защитный газ, обтекая зону дуги, защищает её от окружающей среды. При отсутствии специальных защитных мер химический состав и механические свойства наплавленного металла резко ухудшаются. Теплотой дуги расплавляется основной и присадочный металл. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. Схема подачи защитного газа показана на рис. 1.

Рис. 1. Схема подачи защитного газа в зону сварки: 1 — сопло; 2 — электрод; 3 — зона дуги; 4 — защитный газ; 5 — расплавленный металл сварочной ванны; 6 — свариваемое изделие

Сварка в среде защитных газов согласно AWS АЗ.О «Термины и определения» обозначается как GMAW — gas metal arc welding.

В качестве защитных газов применяют инертные (аргон и гелий) газы. Данный вид сварки обозначается как MIG (metal inert gas). А также активные (углекислый газ, водород, кислород и азот) газы или их смеси (Аг + Не, Аг + С02, Аг + 02, СОг + 02 и др.). Данный вид сварки обозначается как MAG (metal active gas). Выбор защитного газа зависит от свариваемого материала и применяемого электрода.

В инертных газах (аргоне, гелии) и их смесях сваривают нержавеющие, жаропрочные и другие стали, цветные металлы (титан, никель, медь, алюминий). Инертные газы не взаимодействуют с расплавленным металлом и его окислами, они только защищают зону дуги и жидкую сварочную ванну от кислорода и азота воздуха.

Сварка в инертных газах применяется в тех случаях, когда сварка другими методами дает худшие результаты или вообще не может быть использована.

Механизированная дуговая сварка в среде С02 плавящимся электродом относится к MAG сварке, получила широкое распространение в промышленности при сварке углеродистых, низколегированных и других сталей.

Наибольшее применение сварка в С02 нашла в судостроении, машиностроении, строительстве трубопроводов, при выполнении монтажных работ, изготовлении котлов и аппаратуры различного назначения и т.д.

  • — высокая производительность сварки, которая достигается вследствие хорошего использования тепла сварочной дуги;
  • — высокое качество сварных швов;
  • — возможность сварки в различных пространственных положениях с применением полуавтоматической и автоматической сварки;
  • — низкая стоимость защитного газа;
  • — возможность сварки на весу без подкладки.
  • — требуется менее квалифицированный персонал по сравнению с ручной сваркой.

Какие факторы влияют на степень окисления:

При сварке в среде СO2 под воздействием высокой температуры дуги молекулы СO2 диссоциируют полностью по реакции:

Поэтому при сварке в среде СO2 происходит окисление атомов элементов (С , Fe, Mn , Si и др.), содержащихся в электродной проволоке и в основном металле.

Выделение газообразной окиси углерода из жидкого металла вызывает «кипение» сварочной ванны и приводит к образованию пор.

Для повышения количества марганца и кремния в металле шва, уменьшающегося в результате угара, и подавления реакции окисления углерода при сварке в углекислом газе применяют электродную проволоку с повышенным содержанием марганца и кремния.

На степень окисления углерода, кремния и марганца при сварке в углекислом газе влияют: напряжение, величина и полярность сварочного тока, а также диаметр электродной проволоки. С повышением напряжения окисление увеличивается, а при возрастании сварочного тока и уменьшении диаметра проволоки (повышении плотности тока) — уменьшается. Сварка на постоянном токе обратной полярности дает меньшее окисление, чем на токе прямой полярности. При сварке проволокой диаметром 0,5 — 1,0 мм происходит значительно меньшее окисление элементов, чем при сварке проволокой больших диаметров. Поэтому более тонкая проволока обеспечивает получение плотных швов.

источник

Сварка в защитных газах

Сущность способа

Сварку в защитных газах можно выполнять неплавящимся, обычно вольфрамовым, или плавящимся электродом. В первом случае сварной шов получается за счет расплавления кромок изделия и, если необходимо, подаваемой в зону дуги присадочной проволоки. Плавящийся электрод в процессе сварки расплавляется и участвует в образовании металла шва. Для защиты применяют три группы газов: инертные (аргон, гелий); активные (углекислый газ, азот, водород и др.); смеси газов инертных, активных или первой и второй групп. Выбор защитного газа определяется химическим составом свариваемого металла, требованиями, предъявляемыми к свойствам сварного соединения; экономичностью процесса и другими факторами.

Смесь инертных газов с активными рекомендуется применять и для повышения устойчивости дуги, увеличения глубины проплавления и изменения формы шва, металлургической обработки расплавленного металла, повышения производительности сварки. При сварке в смеси газов повышается переход электродного металла в шов.

Смесь аргона с 1—5% кислорода используют для сварки плавящимся электродом низкоуглеродистой и легированной стали. Добавка кислорода к аргону понижает критический ток, предупреждает возникновение пор, улучшает форму шва.

Смесь аргона с 10—25% углекислого газа применяют при сварке плавящимся электродом. Добавка углекислого газа при сварке углеродистых сталей позволяет избежать образование пор, несколько повышает стабильность дуги и надежность защиты зоны сварки при наличии сквозняков, улучшает формирование шва при сварке тонколистового металла.

Смесь аргона с углекислым газом (до 20%) и с не более 5% кислорода используют при сварке плавящимся электродом углеродистых и легированных сталей. Добавки активных газов улучшают стабильность дуги, формирование швов и предупреждают пористость.

Смесь углекислого газа с кислородом (до 20%) применяют при сварке плавящимся электродом углеродистой стали. Эта смесь имеет высокую окислительную способность, обеспечивает глубокое проплавление и хорошую форму, предохраняет шов от пористости.

Смесь углекислого газа с кислородом (до 20%) применяют при сварке плавящимся электродом углеродистой стали. Эта смесь имеет высокую окислительную способность, обеспечивает глубокое проплавление и хорошую форму, предохраняет шов от пористости.

В зону сварки защитный газ может подаваться центрально (см. рис. XI.2 и XI.3, а,в), а при повышенных скоростях сварки плавящимся электродом — сбоку (см. рис. XI.3,б). Для экономии расхода дефицитных и дорогих инертных газов используют защиту двумя раздельными потоками газов (см. рис. XI.3,в); наружный поток — обычно углекислый газ. При сварке активных материалов для предупреждения контакта воздуха не только с расплавленным, но и с нагретым твердым металлом применяют удлиненные насадки на сопла (подвижные камеры, см. рис. XI.3,г). Наиболее надежная защита достигается при размещении изделия в стационарных камерах, заполненных защитным газом. Для сварки крупногабаритных изделий используют переносные камеры из мягких пластичных обычно прозрачных материалов, устанавливаемых локально над свариваемым стыком. Теплофизические свойства защитных газов оказывают большое влияние на технологические свойства дуги, а значит на форму и размеры шва. При равных условиях дуга в гелии по сравнению с дугой в аргоне является более «мягкой», имеет более высокое напряжение, а образующийся шов имеет меньшую глубину проплавления и большую ширину. Углекислый газ по влиянию на форму шва занимает промежуточное положение.

XI.2. Схемы сварки в защитных газах а, б — неплавящимся, плавящимся электродом; 1 — сварочная дуга; 2 — электрод; 3 — защитный газ; 4 — газовое сопло (горелка); 5 — присадочная проволока

XI.3. Схемы подачи защитного газа в зону сварки
а — центральная; б — боковая; в — двумя концентрическими потоками; г — в подвижную камеру (насадку); 1 — электрод; 2 — защитный газ; 3, 4 — наружный и внутренний потоки защитных газов; 5 — насадка; 6 — распределительная сетка

Преимущества и недостатки способа

Широкий диапазон применяемых защитных газов обусловливает большое распространение этого способа как в отношении свариваемых металлов, так и их толщин (от 0,1 мм до десятков миллиметров). Основными преимуществами рассматриваемого способа сварки являются следующие:

  • высокое качество сварных соединений па разнообразных металлах и их сплавах разной толщины, особенно при сварке в инертных газах из-за малого угара легирующих элементов;
  • возможность сварки в различных пространственных положениях;
  • отсутствие операций по засыпке и уборке флюса и удалению шлака;
  • возможность наблюдения за образованием шва, что особенно важно при механизированной сварке;
  • высокая производительность и легкость механизации и автоматизации процесса;
  • низкая стоимость при использовании активных защитных газов.

К недостаткам способа относятся: необходимость применения защитных мер против световой и тепловой радиации дуги; возможность нарушения газовой защиты при сдувании струи газа движением воздуха или при забрызгиванни сопла; потерн металла на разбрызгивание, при котором брызги прочно соединяются с поверхностями шва и изделия; наличие газовой аппаратуры и в некоторых случаях необходимость водяного охлаждения горелок.

Подготовка кромок и их сборка под сварку

Способы подготовки кромок под сварку (механические, газовые и т. д.) такие же, как и при других способах сварки. Вид разделки кромок и ее геометрические размеры должны соответствовать ГОСТ 14771—76 или техническим условиям на изготовление изделия. При механизированной сварке плавящимся электродом можно получить полный провар без разделки кромок и без зазора между ними при толщине металла до 8 мм. При зазоре или разделке кромок полный провар достигается при толщине металла до 11 мм. При автоматической сварке стыковых соединений производительность процесса значительно возрастает при использовании разделки без скоса кромок (щелевой разделке см. рис. Х.11). При толщине металла до 40 мм зазор между кромками в нижней части стыка до 10 мм. Для обеспечения постоянства зазора в зоне сварки из-за поперечной усадки при сварке каждого прохода выполняют шарнирное закрепление деталей с углом раскрытия кромок, зависящим от толщины свариваемого металла.

XI.11. Схема расположения присадочной проволоки относительно сварочной ванны
1 — присадочная проволока; 2 — сварочная ванна; 3 — электрод; 4 — границы струи защитного газа. Стрелкой указано направление сварки

При сварке в углекислом газе многослойных швов на сталях перед наложением последующего слоя поверхность предыдущего слоя следует тщательно очищать от брызг и образующего шлака. Для уменьшения забрызгивання поверхности детали из углеродистой стали ее покрывают специальными аэрозольными препаратами типа «Дуга». Сварку можно вести при непросохшем препарате. Детали собирают с помощью струбцин, клиньев, скоб или на прихватках. Прихватки лучше выполнять в защитных газах тем же способом, которым будет проводиться и сварка. Прихватки перед сваркой осматривают, а при сварке переваривают.

Общие рекомендации по технике сварки

Ручную и механизированную сварку обычно ведут на весу. Автоматическую сварку можно осуществлять так же, как и при сварке под флюсом, на остающихся или съемных подкладках и флюсовых подушках. Однако во многих случаях наиболее благоприятные результаты достигаются при использовании газовых подушек (рис. XI.4). Они улучшают формирование корня шва, а при сварке активных металлов способствуют и защите нагретого твердого металла от воздействия с воздухом. Подаваемые в подушку газы по составу могут быть аналогичными применяемым для защиты зоны сварки.

XI.4. Схемы газовых подушек
а, б — односторонняя и двусторонняя сварка; 1 — защитный газ; 2 — медная подкладка

Качество шва в большой степени определяется надежностью оттеснения от зоны сварки воздуха. Необходимый расход защитного газа устанавливают в зависимости от состава и толщины свариваемого металла, конструкции сварного соединения, скорости сварки, состава защитного газа.

Влияние скорости сварки на надежность защиты зоны сварки видно из рис. XI.5. Ветер и сквозняки также снижают эффективность газовой защиты. В названных случаях рекомендуется на 20—30% повышать расход защитного газа, увеличивать диаметр выходного отверстия сопла или приближать горелку к поверхности детали. При сварке на повышенных скоростях полезно также наклонять горелку углом вперед, а при автоматической сварке применять боковую подачу газа (см. рис. XI.3,б). Для защиты от ветра зону сварки закрывают щитками. Для достаточной защиты соединений, указанных на рис. XI.6,в,г, необходим повышенной расход газа. При их сварке рекомендуется устанавливать сбоку и параллельно шву экраны, задерживающие утечку защитного газа. При равных условиях расход гелия благодаря его меньшей плотности должен быть увеличен по сравнению с аргоном или с углекислым газом.

XI.5. Влияние скорости сварки на эффективность газовой защиты
а—в — сварка соответственно на малой, средней и очень большой

XI.6. Схемы (а—г) расположения границы струи защитного газа при сварке различных типов соединений

источник

Механизированная сварка в защитном газе – усовершенствованная технология соединения металлических конструкций

Содержание:

Сварочные работы занимают ведущие места в разных отраслях, например в промышленности: от производства микросхем до космических станций в открытом космосе. Среди разных способов сварки в последнее время появилась механизированная сварка в защитном газе. Это одна из разновидностей дуговой сварки. Этот вид высокопроизводительных сварочных работ заменяет собой ручную дуговую сварку покрытыми электродами. Производительность механизированной сварки в защитном газе выше в 2-3 раза, при этом многие современные сварочные аппараты позволяют сварщику работать на расстоянии до 30 метров от источника питания. Благодаря таким усовершенствованиям, появилась возможность быстрого и достаточно легкого перемещения между различными узлами и элементами сварочной конструкции.

Виды механизированной сварки.

Виды механизированной сварки отличаются использующимися газами или их смесями. Сварка может происходить в углекислом газе, в инертном одноатомном газе (к примеру, в аргоне или гелии), в нейтральном двухатомном газе (например, в водороде или азоте), а также в смеси газов.

Применение смесей газов:

  • Аргон с 1—5% кислородом используется во время сварочных работ над легированной и низкоуглеродистой сталью. Эта смесь газов улучшает форму шва, помогает избежать образования пор и уменьшает критический ток.
  • Аргон с 10-25% углекислым газом используется для углеродистой стали. Эта смесь увеличивает стабильность дуги, уменьшает образование пор, во время сварки тонколистового металла улучшает форму шва.
  • Аргон с добавлением до 20% углекислого газа и не более 5% кислорода используется для легированной и углеродистой стали. При применении такой смеси улучшается дуга, качество получаемых швов и уменьшает пористость.
  • Углекислый газ с добавлением до 20% кислорода используется для углеродистой стали. Данная смесь обеспечивает глубокое проплавление, защищает шов от пористости, дает ему хорошую форму и имеете повышенную окислительную способность.

Особенности механизированной сварки в защитном газе.

Если электрод плавится на повышенной скорости, то в зону сварки защитный газ должен подаваться сбоку. Если же электрод плавится на обычной скорости, защитный газ подается центрально. Для экономии дорогостоящих газов создается дополнительная защита, состоящая из двух раздельных потоков газов. Для наружного потока, чаще всего, используется углекислый газ.

Размеры и форма швов зависит от теплофизических свойств защитных газов. Например, сварочная дуга в гелии имеет большее напряжение, чем в аргоне (при тех же условиях), и становится более «мягкой», в результате чего шов получается широким и неглубоким.

Механизированная сварка в защитном газе имеет свои преимущества, так например: сварочная дуга находится при работе внутри потока газа. Этот поток защищает сварочный шов от окисления при контакте с кислородом и азотом, содержащихся в воздухе. Отсутствуют флюсы и шлаки, поэтому не требуется постоянная очистка металла и обмазка, что делает процесс более трудоемким и дорогостоящим. Механизированной сваркой можно обрабатывать разнообразные металлы и сплавы, в том числе и цветные. Производится сварка без применения ручной подварки и внутренних колец. А сам сварочный шов имеет хороший внешний вид и при этом очень устойчив к внутренним нагрузкам и деформации. Стоит отметить и малую деформацию свариваемых поверхностей, небольшую поверхность термического влияния. Еще одно преимущество – это возможность наблюдения за формированием шва.

Однако механизированная сварка имеет и недостатки, к примеру: в ветреную погоду невозможно выполнять сварочные работы, поскольку при сильном порыве ветра защитный газ сдувается. Помимо этого, для обработки некоторых видов металлов требуется использовать дорогостоящие газы.

Механизированная сварка в защитном газе позволяет качественно обработать практически все использующиеся в строительстве материалы. Использование защитного газа или смеси газов позволяет уменьшить расход электродов, время плавления металла и количество разбрызгиваемых капель вокруг сварочного шва. Однако не все газы или их смеси подходят для обработки того или иного материала, и сварка требует больших затрат дорогостоящего газа.

источник

Технология и режимы механизированной сварки в среде защитных газов

При сварке судостроительных сталей в качестве защитного газа применяют углекислый газ (СО2). Механизированную сварку можно осуществлять тонкой электродной проволокой (dэ = 0,8 – 1,8мм) во всех пространственных положениях с использованием полуавтоматов типа А-547Р, ПДПГ-300, «Гранит», «Нева». Сварку проводят с применением сварочной проволоки марок Св-08ГС или Св-08Г2С.

Подготовку кромок при сварке проволокой dэ = т0,8 – 1,2 мм производят как для РДС, т.е. по ГОСТ РФ 5264-69, а при сварке проволокой dэ = 1,6 – 2,0 мм, как для сварки в защитных газах, т.е. по ГОСТ РФ 14771-69. Ориентировочные рекомендации по выбору режимов сварки приведены в [ ].

Технология сварки меди и её сплавов.Медь на судостроительных заводах сваривали угольным электродом или с помощью газового пламени. Если завод располагал соответствующими установками, для сварки меди предпочитают использовать метод аргонно-дуговой сварки неплавящимся (вольфрамовым) электродом. Основное осложнение при сварке меди связано с высокой её теплопроводностью, низкими механическими свойствами при высоких температурах и интенсивным окислением и засорением сварочной ванны закисью меди (Сu2О). Закись меди в смеси с медью залегает ме6жду зёрнами основного металла, образуя хрупкие прослойки, по которым и происходит разрушение; сварное соединение становится склонным к трещинообразованию. Процесс сварки может быть осложнён также и тем, что расплавленная медь хорошо растворяет газы. В процессе поглощения расплавленной медью водорода и окиси углерода, находящихся в восстановительной зоне газового пламени или в зоне угольной дуги, в сварочной ванне могут происходить различные реакции – водород активно растворяется не только в жидкой, но и в твёрдой меди. При наличии в твёрдой меди участков Сu2О, диффузионно-подвижный водород реагирует с ней. Образовавшийся водяной пар скапливается, создавая давление, которое и приводит к образованию многочисленных трещин.

Наиболее просто и легко медь сваривают аргонно-дуговой сваркой. При этом требуется тщательная очистка кромок и присадочного металла и применения чистого аргона. Сварку ведут на постоянном токе при прямой полярности. Присадка – бронза типа Бр. Х-0,3 или Бр. КМц-3-1. Во избежание растекания металла сварочной ванны, сварку ведут на графитовой подкладке без перерывов со скоростью не меньше 0,25 м/мин. Для газовой сварки применяют горелки с большим расходом ацетилена – 150-200 л/ч на 1 мм толщины листа. Медь также можно сваривать специальными электродами «Комсомолец».

Сварка латуней и бронз. При сварке латуней основные затруднения связаны с выгоранием цинка, так как температура плавления латуней обычно лежит в пределах 800-950 о С, а цинк плавится при 419 о С и кипит при 906 о С. Часть цинка испаряется в виде паров металла и в воздухе окисляется, образуя ядовитые пары ZnО; В шве количество цинка уменьшается и образуются пустоты (поры).

Затруднения при сварке оловянистых бронз связаны с выгоранием олова и образованием двуокиси олова (SnО2), с повышением хрупкости таких бронз при нагреве, а при сварке алюминиевых бронз – с образованием тугоплавких окислов алюминия (Аl2О3). Кремнистые бронзы свариваются легко.

Как латуни, так и бронзы можно сваривать газовой и электродуговой сваркой (угольные и металлические электроды). Сварку латуней и бронз следует вести с подогревом особенно начальных участков шва (до 200 – 300 о С), что ускоряет процесс и позволяет обеспечить скорость, превышающую 0,25 м/мин. Сварку производят с применением флюса на основе буры и борной кислоты. Газовую сварку латуни выполняют окислительным пламенем (О22H2 о С), который, образуясь на поверхности сварочной ванны, препятствует сплавлению, а также может засорять металл шва и резко снижать прочность соединения. Кроме того, алюминий имеет значительную ус адку (7%) и малую прочность при повышении температуры выше 450 о С, вследствие чего расплавленный алюминий в районе шва может «провалиться» под влиянием собственного веса. Контролировать же нагрев алюминия трудно, так как он не меняет своего цвета. Поэтому иногда под шов рекомендуют подкладывать фиксирующую планку. Из-за высокой теплопроводности алюминия сварку обычно ведут с предварительным подогревом металла в начале шва (100-150 о С). Свариваемые кромки перед сваркой тщательно очищают от плёнки окислов механическим способом и обезжиривают содовым раствором.

Дуговую сварку ведут на постоянном токе: при угольных электродах на прямой полярности, а пари металлических – на обратной полярности. Институт электросварки им. Патона разработал способ автоматической сварки алюминиевых сплавов под слоем флюса АН-А1, в состав которого входят КСl и Nа3АlF6.

Сварку ведут автоматами электродной проволокой диаметром 1-5 мм марки АМг6, при силе тока 300-600А и напряжении на дуге 34-48 В.

Наиболее универсальным способом сварки алюминия и его сплавов является способ аргонно-дуговой сварки неплавящимся (вольфрамовым) электродом, либо плавящимся электродом (проволока того же состава, что и основной металл). Сварку производят плавящимся электродом (проволокой) на постоянном токе при обратной полярности. При аргонно-дуговой сварке необходимо также производить тщательную зачистку свариваемых кромок деталей. В качестве защитного газа следует применять чистый аргон марок А и Б. Полуавтоматическую и ручную сварку в среде аргона плавящимся и неплавящимся электродами можно производить в любом пространственном положении. Для судостроения рекомендуются автоматы и полуавтоматы АДПГ, ПДА-300, ПШП-10 и др. Режимы сварки плавящимся электродом в среде аргона рекомендуется выбирать по таблицам работы [4].

Технология сварки титана и его сплавов.Лёгкие, высокопрочные и коррозионностойкие сплавы титана всё шире начинают применять в судостроении.

С точки зрения сварки для титана характерна очень высокая химическая активность; так при нагреве, начиная с температуры 400 о С, а особенно интенсивно от 600 0 С, металл активно реагирует со всеми газами, кроме инертных, при температуре плавления металл активно растворяет многие газы, включая азот, водород, пары воды, окись и двуокись углерода и т.п. и реагирует с ними. В тоже время наличие небольших включений указанных газов, существенно снижает механические свойства металла и, в частности, резко ухудшает пластические свойства. Доброкачественное сварное соединение можно получить только при условии, если ограничить содержание в шве примесей азота, кислорода, водорода и углерода, обеспечив надёжную защиту сварочной ванны, металла шва и ЗТВ инертными газами (аргон, гелий), с которыми титан не вступает во взаимодействие.

В ряде случаев пригодность титана для сварки предварительно оценивают по величине расчётной твёрдости НВ, определяя её по эмпирической формуле

НВ = 40 + 310√ Оэ , 7.8.

Где Оэ – эквивалентное содержание кислорода.

Его, в свою очередь, определяют по формуле

Где О2, N2, C — процентное содержание в титане соответственно кислорода, азота и углерода.

В том случае, если НВ 0 С) не только с лицевой поверхности свариваемых листов, но и с обратной стороны шва (сварка с обратным поддувом газа). Практически это осуществляется с помощью горелок, имеющих специальные «приставки» для дополнительной подачи защитного газа и дополнительную трубную подкладку для подачи защитного газа с обратной стороны. Длина приставки на грелках может достигать 400-500 мм. В качестве защитного газа могут быть использованы аргон или гелий (Рис.7.4.)

В институте электросварки им. Патона был разработан процесс автоматической сварки под флюсом и ЭШС титана. Рекомендовано использовать бескислородные флюсы АН-Т1 и АН-Т2. Сварку титана под флюсом производят на обычном оборудовании, на постоянном токе (обратная полярность). На некоторых судостроительных предприятиях сварку конструкций из титана производят в специальных камерах, заполненных аргоном, соблюдая при этом все меры техники безопасности и охраны труда работающих.

Сварка разнородных материалов.При сварке разнородных материалов возникают определённые трудности:

1. При большом различии в температурах плавления (момент достижения одним материалом Тпл, другой материал находится в твёрдом состоянии);

2. Различия в коэффициентах линейного расширения α у свариваемых материалов вызывают повышенные термические напряжения;

3. Различия теплопроводности и теплоёмкости ведёт к изменению температурных полей и плюс условий кристаллизации металла шва;

4. Резкое различие в электромагнитных свойствах ведёт к неудовлетворительному формированию шва;

5. Наличие окисных плёнок, наличие различных включений в металле шва;

Решающее значение на процесс получения сварного соединения оказывает металлургическая совместимость, т.е. взаимная растворимость соединяемых металлов и в жидком и в твёрдом состоянии.

Существуют различные способы сварки разнородных материалов на примере сварки стали с медью и её сплавами (латунь, бронза):

— соединение разнородных металлов в твёрдом состоянии – сварка давлением (холодная, прессовая, трением, диффузионная, УЗС, взрывом и др.);

— соединение сваркой плавлением и наплавкой – дуговой способ (сварка в защитных газах, под флюсом, плазменно-дуговая, ЭШС, лазерная и др.);

— контактная сварка – машины типа МТП-К1;

— диффузионная сварка в вакууме;

— сварка и наплавка трением – станки типа МСТ-23, МСТ – 2001.

Сварка пластмасс.В машиностроении в настоящее время используется 1/3 всех выпускаемых в РФ полимерных материалов (подшипники скольжения, зубчатые и червячные колёса, детали тормозных устройств, кузова автомобилей, катера, яхты, протезы и др. медицинское оборудование). Вот некоторые достоинства полимеров:

— малый удельный вес ( 1 – 1,6 г/см 3 );

— не подвержены электрохимической коррозии;

— высокая удельная прочность;

— плохо проводят тепло и др.

Наличие вот таких свойств, приводит к определённым трудностям при сварке пластмасс:

1. Длительная выдержка при высоких температурах вызывает термическое разложение пластмасс (деструкция);

2. Многие пластмассы ( ПМ) не имеют чётко выраженной температуры плавления;

а) сварка газовыми теплоносителями – применяют присадочные прутки диаметром 2, 3 и 4 мм. (более пластифицированы, чем основной материал); используют электрические горелки с напряжением меньше 36 в., а также газовые горелки типа ГГП-1-56 ( Т 0 С выхода газов ≈ 300 0 С);

б) сварка нагретыми инструментами ( установки типа МСП-4);

д) ультразвуковая сварка ( установки типа УПТ-14, УПК-15 и др.);

е) ядерная сварка ( состоит в облучении пластмасс потоком нейтронов – слой лития или бора облучают нейтронами).

Охрана труда при проведении сварочных работ.При сварке, а также при газопламенной обработке имеются профессиональные опасности и вредности, а также источники возможного травматизма, действие которых необходимо учитывать при организации работ. Все рабочие должны быть тщательно проинструктированы безопасным методам выполнения работ. Приводим специфические источники опасности при электрической сварке.

Источники электрического тока.Кожный покров человека, в особенности в сухом состоянии, оказывает значительное сопротивление прохождению тока. Расчётное сопротивление человека – 1000 Ом. Безопасным для жизни, вызывающим болезненное ощущение считается ток 0,03 – 0,05 А. Следовательно предельным безопасным напряжением можно считать: Uпред = I R = 0,05 · 1000 = 50 В.

Однако при влажной коже сопротивление резко снижается и даже при таком напряжении ток, протекающий через тело человека, может превысить безопасную величину.

Токоведущие части оборудования – кабели и ручки электрододержателей должны быть изолированы.

Для электросварочных установок напряжение холостого хода (Uхх) допускается до 80 В. Обязательно установки должны быть заземлены.

Нагретый металл, капли и брызги металла. Одежда сварщика должна быть из плотной негорючей ткани, не имеющей складок, открытых карманов или разрезов, куда могли бы попасть брызги и расплавленные капли. При сварке обязательное ношение головного убора и плотных брезентовых рукавиц. Вблизи сварки не должно быть горючих материалов, красок, стружки или баллонов с газами (ацетилен, кислород и др.).

Пыль и вредные газы.Образуются при горении дуги и расплавлении металла, которые могут попасть в организм человека. Главным средством борьбы с запылённостью при сварке является устройство вытяжной вентиляции – общеобменной и местной.

Лучистая энергия, выделяемая дугой.В спектре её содержаться инфракрасные видимые и ультрафиолетовые лучи. Яркость света сварочной дуги превышает в 16000 раз максимальную яркость допускаемую для незащищённого глаза. Поэтому при сварке необходимо пользоваться стеклянным светофильтром с очень малой прозрачностью.

Охрана труда работающего персонала является важной обязанностью руководителей сварочного производства.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9414 — | 7314 — или читать все.

85.95.178.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Инертные и активные защитные газы, их смеси

Инертные

Не вступают в химическое взаимодействие с металлами и практически не растворяются в металлах

Аргон (Ar) — бесцветный, без запаха, негорючий, неядовитый газ, почти в 1,5 раза тяжелее воздуха. В металлах нерастворим как в жидком, так и в твердом состояниях. Выпускается (ГОСТ 10157-79) двух сортов: высшего и первого.

В газе высшего сорта содержится 99,993 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Рекомендуется для сварки ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов.

В газе первого сорта содержится 99,98 % аргона, до 0,01 % азота и не более 0,002 % кислорода. Рекомендуется для сварки стали и чистого алюминия.

Гелий (Не) — бесцветный газ, без запаха, неядовитый, значительно легче воздуха и аргона. Выпускается (ГОСТ 20461-75) двух сортов: высокой чистоты (до 99,985 %) и технический (99,8%).

Используется реже, чем аргон, из-за его дефицитности и высокой стоимости. Однако при одном и том же значении тока дуга в гелии выделяет в 1,5 — 2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительному увеличению скорости сварки.

Гелий применяют при сварке химически чистых и активных материалов, а также сплавов на основе алюминия и магния.

Азот (N2) — газ без цвета, запаха п вкуса, неядовитый. Используется только для сварки меди и ее сплавов, по отношению к которым азот является инертным газом. Выпускается (ГОСТ 9293-74) четырех сортов: высшего — 99,9% азота; 1-го — 99,5%; 2-го — 99,0%; 3-го — 97,0%.

Активные

Защищают зону сварки от воздуха, но сами растворяются в жидком металле либо вступают с ним в химическое взаимодействие

Кислород (О2) — газ без цвета, запаха и вкуса. Негорючий, но активно поддерживающий горение. Технический газообразный кислород (ГОСТ5583-78) выпускается трех сортов: 1-й сорт — 99,7% кислорода; 2-й — 99,5%; 3-й — 99,2%. Применяется только как добавка к инертным и активным газам.

Углекислый газ (СО2) — бесцветный, со слабым запахом, с резко выраженными окислительными свойствами, хорошо растворяется в воде. Тяжелее воздуха в 1,5 раза, может скапливаться в плохо проветриваемых помещениях, в колодцах, приямках. Выпускается (ГОСТ 8050-85) трех сортов: высший-99,8% СО2, 1-й-99,5% и 2-й-98,8%. Двуокись углерода 2-го сорта применять не рекомендуется. Для снижения влажности СО2 рекомендуется установить баллон вентилем вниз и через 1-2 ч открыть вентиль на 8-10 с для удаления воды. Перед сваркой из нормально установленного баллона выпускают небольшое количество газа, чтобы удалить попавший внутрь воздух.

В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали.

Газовые смеси

Служат для улучшения процесса сварки и качества сварного шва

Смесь аргона и гелия. Оптимальный состав: 50% + 50% или 40% аргона и 60% гелия. Пригоден для сварки алюминиевых и титановых сплавов.

Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.

Смесь аргона и углекислого газа. Рациональное соотношение — 75-80% аргона и 20-25% углекислого газа. При этом обеспечиваются минимальное разбрызгивание, качественное формирование шва, увеличение производительности, хорошие свойства сварного соединения. Используется при сварке низкоуглеродистых и низколегированных конструкционных сталей.

Смесь углекислого газа и кислорода. Оптимальный состав: 60-80% углекислого газа и 20-40% кислорода. Повышает окислительные свойства защитной среды и температуру жидкого металла. При этой смеси используют электродные проволоки с повышенным содержанием раскислителей, например Св-08Г2СЦ. Шов формируется несколько лучше, чем при сварке в чистом углекислом газе. Смесь применяют для сварки углеродистых, легированных и некоторых высоколегированных конструкционных сталей.

Смесь аргона, углекислого газа и кислорода — трехкомпонентная смесь обеспечивает высокую стабильность процесса и позволяет избежать пористости швов. Оптимальный состав: 75% аргона, 20% углекислого газа и 5% кислорода. Применяется при сварке углеродистых, нержавеющих и высоколегированных конструкционных сталей.

источник

Adblock
detector