Меню Рубрики

Механизированная сварка в среде инертных газов

Механизированная сварка в среде защитных газов

Механизированной (полуавтоматической) дуговой сваркой называется дуговая сварка, при которой подача плавящегося электрода или присадочного металла или относительное перемещение дуги и изделия выполняется с помощью механизмов.

При механизированной сварке в качестве плавящегося электрода используется проволока сплошного сечения, порошковая и самозащитная порошковая проволока. В случае применения проволоки сплошного сечения или порошковой проволоки для защиты сварочной дуги и наплавленного металла применяются защитные газы. Защитный газ, обтекая зону дуги, защищает её от окружающей среды. При отсутствии специальных защитных мер химический состав и механические свойства наплавленного металла резко ухудшаются. Теплотой дуги расплавляется основной и присадочный металл. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. Схема подачи защитного газа показана на рис. 1.

Рис. 1. Схема подачи защитного газа в зону сварки: 1 — сопло; 2 — электрод; 3 — зона дуги; 4 — защитный газ; 5 — расплавленный металл сварочной ванны; 6 — свариваемое изделие

Сварка в среде защитных газов согласно AWS АЗ.О «Термины и определения» обозначается как GMAW — gas metal arc welding.

В качестве защитных газов применяют инертные (аргон и гелий) газы. Данный вид сварки обозначается как MIG (metal inert gas). А также активные (углекислый газ, водород, кислород и азот) газы или их смеси (Аг + Не, Аг + С02, Аг + 02, СОг + 02 и др.). Данный вид сварки обозначается как MAG (metal active gas). Выбор защитного газа зависит от свариваемого материала и применяемого электрода.

В инертных газах (аргоне, гелии) и их смесях сваривают нержавеющие, жаропрочные и другие стали, цветные металлы (титан, никель, медь, алюминий). Инертные газы не взаимодействуют с расплавленным металлом и его окислами, они только защищают зону дуги и жидкую сварочную ванну от кислорода и азота воздуха.

Сварка в инертных газах применяется в тех случаях, когда сварка другими методами дает худшие результаты или вообще не может быть использована.

Механизированная дуговая сварка в среде С02 плавящимся электродом относится к MAG сварке, получила широкое распространение в промышленности при сварке углеродистых, низколегированных и других сталей.

Наибольшее применение сварка в С02 нашла в судостроении, машиностроении, строительстве трубопроводов, при выполнении монтажных работ, изготовлении котлов и аппаратуры различного назначения и т.д.

  • — высокая производительность сварки, которая достигается вследствие хорошего использования тепла сварочной дуги;
  • — высокое качество сварных швов;
  • — возможность сварки в различных пространственных положениях с применением полуавтоматической и автоматической сварки;
  • — низкая стоимость защитного газа;
  • — возможность сварки на весу без подкладки.
  • — требуется менее квалифицированный персонал по сравнению с ручной сваркой.

Какие факторы влияют на степень окисления:

При сварке в среде СO2 под воздействием высокой температуры дуги молекулы СO2 диссоциируют полностью по реакции:

Поэтому при сварке в среде СO2 происходит окисление атомов элементов (С , Fe, Mn , Si и др.), содержащихся в электродной проволоке и в основном металле.

Выделение газообразной окиси углерода из жидкого металла вызывает «кипение» сварочной ванны и приводит к образованию пор.

Для повышения количества марганца и кремния в металле шва, уменьшающегося в результате угара, и подавления реакции окисления углерода при сварке в углекислом газе применяют электродную проволоку с повышенным содержанием марганца и кремния.

На степень окисления углерода, кремния и марганца при сварке в углекислом газе влияют: напряжение, величина и полярность сварочного тока, а также диаметр электродной проволоки. С повышением напряжения окисление увеличивается, а при возрастании сварочного тока и уменьшении диаметра проволоки (повышении плотности тока) — уменьшается. Сварка на постоянном токе обратной полярности дает меньшее окисление, чем на токе прямой полярности. При сварке проволокой диаметром 0,5 — 1,0 мм происходит значительно меньшее окисление элементов, чем при сварке проволокой больших диаметров. Поэтому более тонкая проволока обеспечивает получение плотных швов.

источник

Оборудование для ручной и механизированной сварки в защитных газах

Односторонняя сварка автоматами на медном перемещающемся ползуне.

Этот способ был разработан в ИЭС им. Патона и был внедрён в производство в виде автомата ТС-32 (Рис.6.7.) и ТС-44. Это способ сварки листов по повышенному зазору с применением подвижного охлаждаемого медного ползуна, закреплённого на тележке, которая с помощью специального ножа соединялась со сварочным трактором через зазор между свариваемыми листами. Одно из требований при таком способе сварки – сохранение постоянным начального зазора между листами. Это достигалось наличием сборочных скоб, устанавливаемых поперёк будущего сварного шва через 800 – 1200 мм и которые в процессе сварки должны удаляться. Такие автоматы позволяли сваривать листы полотнищ толщиной до 12 мм. Позже в ЦНИИ ТС был разработан аналог этих автоматов — автомат типа «Бриг». Существенным недостатком этого высокопроизводительного способа сварки явилось наличие сверхнормативных остаточных местных сварочных деформаций типа «волнистости» (потеря устойчивости) на толщинах 4-6 мм и «домиков» на толщинах 8-12 мм по концам стыковых соединений на длине 800 – 1200 мм. Несмотря на этот недостаток, стоимость сборки листов полотнищ снизилась в 2 раза, а стоимость сварки – в 1,5 раза.

Полуавтоматы. Установки для сварки полуавтоматами типа ПШ-5 (ПШ-5У), ПШ-54 под слоем флюса в настоящее время в судостроении не применяются в силу их недостатков – значительный вес держателя (из-за бункера с флюсом), малый запас флюса, невозможность плавного регулирования скорости подачи проволоки.

Отечественная промышленность располагает большим числом различных автоматов и полуавтоматов для сварки в защитных газах. В судостроении находят применение автоматы для сварки плавящимся электродом: АДПГ-500, АДСП-1, ТС-35 и неплавящимся (вольфрамовым) электродом – АДСВ-2.

Автомат АДПГ-500 предназначен для сварки плавящимся стальным электродом в среде защитных газов (СО2, Аr, Hе) стыковых и угловых швов в нижнем положении. В комплект установки входят источник питания сварочной дуги ( преобразователь типа ПСГ-500), шкаф управления, сварочный трактор и газовая аппаратура. Сварочный трактор имеет детали, унифицированные с автоматом АДФ-500. Трактор – малогабаритный предназначен для сварки тонкой электродной проволокой диаметром 0,8 – 2 мм при силах тока 150 – 500 а. Скорость сварки может изменяться в пределах 15 – 70 м/ч, а скорость подачи проволоки 90 – 960 м/ч. Трактор может перемещаться по изделию. Газовая аппаратура состоит (Рис.6.8.) из баллона с защитным газом, редуктора, ротаметра (расходомер газа) и соединительных шлангов. При сварке в среде СО2 в состав газовой системы включают осушитель и подогреватель газа. Грелка с водяным охлаждением обеспечивает подачу защитного газа в пределах 600 — 1500 л/ч.

На судостроительных заводах сварку плавящимся электродом в защитных газах наиболее широко применяют как полуавтоматическую с применением полуавтоматов ПДПГ-300, ПДПГ-500, А-537Р, «Гранит» и «Нева» и др.

Полуавтоматы ПДПГ-300 и ПДПГ-500 – в состав установки входят источник сварочного тока (типа ПСГ-350 или ПСГ-500), шкаф управления, подающий механизм с гибкими шлангами и сварочными пистолетами и газовая аппаратура (Рис.6.8).

Подающий механизм обеспечивает подачу проволоки диаметром 0,8- 2,0 мм со скоростью до 960 м/ч. Полуавтоматы предназначены для сварки плавящимся электродом в среде защитных газов стыковых и угловых швов в любых пространственных положениях. Полуавтомат А-547Р (А-547, А-547У) предназначен для сварки в среде углекислого газа; создан в ИЭС им. Патона. Особенность полуавтомата – облегчённый пистолет с коротким шлангом длиной от 0,8 до 1 м (Рис.6.9). Полуавтомат рассчитан на электродную проволоку диаметром 0,Ю8 – 1,0 мм и предназначен для сварки тонколистовой стали толщиной до 3 мм и угловых швов катетом 4 мм в углекислом газе.

Для сварки титановых сплавов применяют автоматы типа АДС-1000-2М, АДС-1000-2В, АСУ-4МВ и полуавтоматы ПГТ-2, «Ритм», «Темп» и др.

Оборудование для ручной и механизированной сварки неплавящимся электродом в среде инертных газов.При этом способе сварки в качестве неплавящегося электрода используют вольфрамовые прутки, содержащие 1,5 -2% окиси лантана или иттрия, которые улучшают эмиссию электронов с электрода, что повышает устойчивость горения дуги. Наиболее широк этот способ применяется для сварки цветных металлов и сплавов и для нержавеющих сталей. Во многих случаях сварочная дуга питается от источника переменного тока, что объясняется следующим.

При сварке алюминия и его сплавов на его основе, а также магниевых сплавов, для разрушения тугоплавкой окисной плёнки, образующейся на поверхности сварочной ванны, необходима обратная полярность (минус на изделии), так как только при таком включении эмиссия электронов с изделия (катода) будет разрушать поверхностную плёнку окислов; сварку можно выполнять качественно при условии указанной очистки сварочной ванны. В тоже время, при обратной полярности вольфрамовый электрод чрезмерно нагревается. Во избежание его расплавления, сварочный ток приходится уменьшать, а это снижает производительность сварки.

При переходе на переменный ток сварочная ванна достаточно очищается в полупериод, когда изделие является катодом; одновременно переменная полярность позволяет повысить сварочный ток и производительность сварки. Однако в этом случае неизбежно появление составляющей постоянного тока Iо(Рис.6.10.) в связи с тем, что электродами являются различные металлы (один электрод – вольфрам, другой – алюминий).

Более интенсивная эмиссия электронов с вольфрамового электрода обусловливает появление несимметричной синусоиды переменного тока, из которой можно выделить постоянную составляющую. Составляющая постоянного тока имеет прямую полярность, что ухудшает качество сварного соединения (затрудняет разрушение плёнок, уменьшает глубину проплавления, ухудшает стабильность дуги). Исследования показали [ 4,5 ], что включение в последовательную сварочную цепь балластных реостатов или ёмкости уменьшает или полностью устраняет составляющую постоянного тока. Поэтому при сварке (механизированной или ручной) алюминиевых сплавов вольфрамовым электродом питание сварочной цепи осуществляют, как правило, переменным током (Рис.6.8,б).

В состав установки входят: источник тока – сварочный трансформатор 1; дроссель для регулирования силы сварочного тока 2; осциллятор для стабилизации дуги 3; балластный реостат 4 для уменьшения составляющей постоянного тока; газо -электрическая горелка 5 с вольфрамовым электродом, газовая система, включающая баллон с аргоном 6 , редуктор 7, ротаметр 8 и шланги для подвода аргона. В ручном варианте газо-электрическую горелку перемещают вручную. Укрепив на тракторе и включив в состав установки шкаф управления, можно сварку вести автоматически. Установки типа УДАР-300 и УДАР-500, а также УДГ-301 и УДГ-501 применяют в судостроении. Для устранения составляющей постоянного тока в сварочную цепь этих установок включены конденсаторные батареи и имеется электронный стабилизатор напряжения. Диаметр вольфрамового электрода – 2-6 мм. В судостроение в настоящее время очень широко применяется автомат АДСВ-2, который предназначен для автоматической сварки нержавеющих сталей и цветных металлов и сплавов неплавящимся вольфрамовым электродом в среде аргона. Сварочный ток до 400 а, скорость сварки 10-80 м/ч, диаметр присадочной проволоки – 1-2,5 мм, скорость её подачи до 800 м/ч.

Гибридная лазерно-дуговая сварка. Основные принципы.Применение дугового разряда как одного из самых распространённых и дешёвых видов источников тепла для сварки наталкивается на существенные трудности, связанные с недостаточной концентрацией энергии в электродуговой плазме и неустойчивостью горения дуги при высоких скоростях сварки [ 1, 3 ]. Поэтому на данный момент всё большее развитие получают гибридные ( помесь) способы сварки, к которым можно отнести и лазерно-дуговую сварку. Данная технология была получена объединением технологий лазерной сварки и сварки в среде защитных газов. На Рис.6.11 показаны основные методы реализации гибридно-дуговой сварки.

Процесс гибридной сварки может быть реализован по двум схемам – в первой схеме луч лазера и дуга действуют с разных сторон, во второй схеме воздействие дуги и луча осуществляется с одной стороны по отношению направлению сварки и нормали к поверхности металла. На данный момент, в силу сложности изготовления оборудования, соответствующего первой схеме, при сварке используется вторая схема. Процесс лазерно-дуговой сварки может осуществляться как неплавящимся так и плавящимся электродом. При использовании неплавящегося электрода дуга зажигается впереди по ходу сварки. Дуга прогревает металл и расплавляет его верхний слой, а лазерный осуществляет глубокое проплавление. При использовании плавящегося электрода электрическую дугу зажигают позади сфокусированного излучения, которое проплавляет только соприкасающиеся части металла. Основой системы гибридной сварки является специальная сварочная горелка, включающая в себя как лазерную оптику, так и горелку для сварки в среде защитных газов (Рис. 6.12).

Схематичное представление метода гибридной лазерно-дуговой сварки показано на Рис.6.13.

При гибридной сварке помимо лазерного излучения на сварочную ванну воздействует сварочная дуга, которая является дополнительным источником энергии, привносимой в сварочную ванну. Минимальная мощность лазера должна быть более 500Вт [2, 3].

Гибридная лазерно-дуговая сварка реализует технологический процесс, в котором взаимно усиливаются преимущества каждого из методов сварки и уменьшаются недостатки, что приводит к расширению технологических возможностей. Применение такого вида сварки – перспективно для судостроения.

Установки для механизированной сварки вертикальных швов. Применение ЭШС.При современных методах постройки корпусов судов из крупных секций или блоков наиболее ответственными являются швы монтажных соединений (межсекционные стыки), которые часто сваривают вручную за несколько проходов ( при толщинах более 15 мм). Это очень трудоёмкий и затратный процесс. В настоящее время на многих судостроительных заводах применяют автомат типа А-433М, (модернизированный для электрошлаковой сварки), разработанный специально для судостроения. Нашли применение также автоматы А-820М, А-612, А-681 и др.

Автомат А-433М (Рис.6.14.) – одноэлектродный перемещающийся по монорельсу, на котором укреплена зубчатая рейка.

На каретке автомата смонтированы сварочная головка, бункер с флюсом и пульт управления. Автомат имеет электромотора: один для вертикального перемещения каретки со скоростью 2,5-20 м/ч и второй для подачи электродной проволоки в шлаковую ванну с постоянной скоростью, которую можно регулировать в пределах 68-430 м/ч. Для формирования шва имеются два медных ползуна или формирующий ползун и подкладная планка, охлаждаемые водой. Сварочная головка автомата установлена на сдвоенном суппорте, что позволяет корректировать положение электрода по ширине и толщине стыка. Автомат рассчитан на применение проволоки диаметром 3 мм при силе тока до 12000 а и предназначен для сварки стали толщиной до 60 мм. В качестве источника питания сварочной цепи используют электромашинный преобразователь ПСМ-1000 с жёсткой внешней характеристикой. В настоящее время вместо этого автомата чаще начали применять автоматы типа А-820М, который предназначен для ЭШС вертикальных швов металла толщиной 18-50 мм. В связи с особой ответственностью монтажных швов корпуса, очень важное значение имеет стабильность качества ЭШС. Особенность подготовки таких соединений под сварку – их кромки не имеют скоса. Сборку с заданным зазором выполняют при помощи скоб (Рис. 6.15.) после обрезки припуска по монтажному стыку.

Для сварки крестообразных соединений набора (флоры и стрингеры) высоких днищевых секций в настоящее время применяют четырёхголовочные (работа одновременно четырёх дуг) автоматы типа «Балтия».

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Технология сварки в инертных газах (стр. 1 из 3)

«ТЕХНОЛОГИЯ СВАРКИ В ИНЕРТНЫХ ГАЗАХ»

При дуговой сварке атмосферный кислород и азот активно взаимодействуют с расплавленным металлом, образуют окислы и нитриды, которые снижают прочность и пластичность сварного соединения. Одним из способов защиты сварочной ванны от воздействия окружающего воздуха является использование защитных газов.

1. История развития сварки в защитных газах

Сварка в струе защитных газов былаизобретена русским изобретателем Николай Николаевичем Бенардосом (26.06.1842 – 21.09.1905) в 1883 году. Защита от воздуха, по его предложению, осуществлялась светильным газом. Но этот метод Бенардоса нашел применение лишь спустя почти пол века и был необоснованно назван американцами «способом Александера». В период Второй мировой войны в США получила развитие сварка в струе аргона или гелия неплавящимся вольфрамовым электродом и плавящимся электродом. Этим способам сварки присвоена аббревиатура TIG и MIG. TIG (Tungsten Inert Gas) – сварка неплавящимся (вольфрамовым) электродом в среде инертного защитного газа, например так называемая аргонодуговая сварка. MIG (MechanicalInertGas) – механизированная (полуавтоматическая или автоматическая) сварка в струе инертного защитного газа. Вскоре эта технология пришла и в Европу. Сначала применялись только инертные газы или аргон, содержащий лишь небольшие доли активных компонентов (например, кислорода), поэтому такая технология сокращенно называлась S.I.G.M.A. Эта аббревиатура означает «shielded inert gas metal arc» – «дуговая сварка металлическим электродом в среде инертного газа». В настоящее время сварка в струе различных газов – аргона, гелия, азота – применяется во многих отраслях техники от небольших мастерских до крупных предприятий. В России с 1953 года вместо дорогостоящих инертных газов стали использовать при сварке активный газ, а именно углекислый газ (CO2). Коллективами Центрального научно-исследовательского института технологий машиностроения и Института электросварки имени Е.О. Патонова разработана и в 1952 году внедрена полуавтоматическая сварка в углекислом газе. Это стало возможным благодаря изобретению проволочных электродов, при использовании которых учитывались большие потери легирующих элементов при сварке в активном газе. Авторы сварки в углекислом газе плавящимся электродом К.М. Новожилив, Г.З. Волошкевич, К.В. Любавский и др. удостоены Ленинской премии.

2. Защитные газы, применяемые при сварке

При ручной сварке неплавящимся электродом в качестве основного газа применяется аргон – инертный газ, не способный к химическим реакциям и практически не растворим в металлах. Аргон считается наиболее доступным и сравнительно дешевым среди инертных газов. Будучи тяжелее воздуха, он хорошо защищает дугу и зону сварки. Дуга в аргоне отличается высокой стабильностью. Аргонодуговую сварку применяют для соединения легированных сталей, цветных металлов и их сплавов, ее выполняют постоянным и переменным током плавящимся и неплавящимся электродами. Аргон является основной защитной средой при сварке алюминия, титана, редких и активных металлов. Газообразный аргон хранится и транспортируется в стальных баллонах (по ГОСТ 949–73). Баллон с чистым аргоном окрашен в серый цвет, с надписью «Аргон чистый» зеленого цвета. Употребление газовых смесей вместо технически чистых газов аргона или гелия в некоторых случаях повышает устойчивость горения сварочной дуги, уменьшает разбрызгивание металла, улучшает формирование шва, увеличивает глубину противления, а также воздействует на перенос металла

Смесь из 90% аргона и 10% водорода употребляется при сварке тонкого металла, обеспечивая увеличение скорости сварки, уменьшение зоны термического влияния, количества выгораемых легирующих элементов и остаточных деформаций. Смесь аргона с 10 – 12% азота позволяет избежать предварительной термообработки, обеспечивая коррозионную стойкость металла шва. Добавка к аргону небольшого количества кислорода или другого окислительного газа существенно повышает устойчивость горения дуги и улучшает качество формирования сварных швов. Для улучшения борьбы с пористостью к аргону иногда добавляют кислород в количестве 3–5%. При этом защита металла становится более активной. Чистый аргон не защищает металл от загрязнений, влаги и других включений, попавших в зону сварки из свариваемых кромок или присадочного металла. Кислород же, вступая в химические реакции с вредными примесями, обеспечивает их выгорание или превращение в соединения, всплывающие на поверхность сварочной ванны. Это предотвращает пористость.

Применение смеси аргона и углекислого газа (обычно 18–25%) эффективно при сварке низкоуглеродистых и низколегированных сталей. По сравнению со сваркой в чистом аргоне или углекислом газе более легко достигается струйный перенос электродного металла. Сварные швы более пластичны, чем при сварке в чистом углекислом газе. По сравнению со сваркой в чистом аргоне меньше вероятность образования пор. Газовая смесь аргона с кислородом обычно используется при сварке легированных и низкоуглеродистых сталей. Добавление к аргону кислорода позволяет предотвратить пористость. Наличие кислорода в дуге способствует мелкокапельному переносу электродного металла.

Гелий используется сравнительно реже. Гелий может применяться в качестве инертного защитного газа при сварке нержавеющих сталей, цветных металлов и сплавов, химически чистых и активных материалов. Гелий легче воздуха, что усложняет защиту сварочной ванны, и, следовательно, требует большего его расхода на защиту. По сравнению с аргоном он обеспечивает более интенсивный нагрев зоны сварки. Он обладает высокой теплопроводностью, имеет высокий потенциал ионизации, поэтому при сварке в гелии увеличивается температура дуги, напряжение и её проплавляющая способность, в связи с чем его иногда используют для проплавления больших толщин или получения специальной формы шва. Часто используется смесь 70% аргона и 30% гелия.Газообразный гелий хранится и транспортируется в стальных баллонах (согласно ГОСТ 949–73). Баллон окрашен в коричневый цвет, с надписью «Гелий» белого цвета.

При сварке меди защитным газом служит азот, так как по отношению к меди он является инертным газом.

3. Область применения и преимущества аргонодуговой сварки

Основная область применения аргонодуговой сварки неплавящимся электродом – соединения из легированных сталей и цветных металлов. При малых толщинах аргонная сварка может выполняться без присадки. Способ сварки обеспечивает хорошее качество и формирование сварных швов, позволяет точно поддерживать глубину проплавления металла, что очень важно при сварке тонкого металла при одностороннем доступе к поверхности изделия. Он получил широкое распространение при сварке неповоротных стыков труб, для чего разработаны различные конструкции сварочных автоматов. В этом виде сварку иногда называют орбитальной. Сварка неплавящимся электродом – один из основных способов соединения титановых и алюминиевых сплавов.

Аргоновая сварка плавящимся электродом используется при сварке нержавеющих сталей и алюминия. Однако объем ее применения относительно невелик.

4. Недостатки аргонодуговой сварки

Недостатками аргонодуговой сварки являются невысокая производительность при использовании ручного варианта. Применение же автоматической сварки не всегда возможно для коротких и разноориентированных швов.

5. Технология ручной сварки неплавящимся электродом в инертных газах

Аргонная сварка может быть ручной, когда горелка и присадочный пруток находятся в руках сварщика, и автоматической, когда горелка и присадочная проволока перемещаются без непосредственного участия сварщика.

В отличие от сварки плавящимся электродом, зажигание дуги не может быть выполнено путем касания электродом изделия. Касание изделия вольфрамовым электродом приводит к его загрязнению и интенсивному оплавлению. Поэтому при аргонной сварке неплавящимся электродом для зажигания дуги параллельно источнику питания подключается устройство, которое называется «осциллятор».

Осциллятор для зажигания дуги подает на электрод высокочастотные высоковольтные импульсы, которые ионизируют дуговой промежуток и обеспечивают зажигание дуги после включения сварочного тока. Если аргонная сварка производится на переменном токе, осциллятор после зажигания дуги переходит в режим стабилизатора и подает импульсы на дугу в момент смены полярности, чтобы предотвратить деионизацию дугового промежутка и обеспечить устойчивое горение дуги.

Технологические свойства дуги в значительной мере определяются родом и полярностью сварочного тока. При прямой полярности на изделии выделяется до 70% теплоты дуги, что обеспечивает глубокое проплавление основного металла. При обратной полярности напряжение дуги выше, чем при прямой полярности. На аноде – электроде выделяется большое количество энергии, что приводит к значительному его разогреву и, как следствие, повышенному его расходу.

Аргонодуговая сварка неплавящимся электродом на постоянном токе обратной полярности практически не применяется. Легированные стали, медные и титановые сплавы свариваются на постоянном токе прямой полярности. При сварка алюминиевых и магниевых сплавов применяется переменный ток. Применение переменного тока производит очищающее действие на сварочную ванну. В полупериоды обратной полярности тяжёлые положительные ионы ударяясь о поверхность металла разрушают и распыляют оксидную пленку (так называемый эффект катодного распыления).

При ручной аргонодуговой сварке на постоянном токе прямой полярности конец вольфрамового электрода затачивают на конус. Длина заточки, как правило должна быть равна двум-трем диаметрам электрода. При сварке на переменном токе рабочий конец вольфрамового электрода затачивают в виде полусферы.

источник

Сварка в среде инертных газов

Сварка в инертных газах производится неплавящимся вольфрамовым электродом или плавящимся электродом, по химическому составу близким к составу свариваемого металла; она осуществляется вручную, полуавтоматически и автоматически.

Этот вид сварки удобен для выполнения сварных соединений в любых пространственных положениях, легко поддаётся механизации, позволяет наблюдать за сварочной ванной в процессе работы, имеет довольно высокую производительность, достигающую при ручной сварке 40-50 м/ч, а при автоматической — 200 м/ч.

Рабочее место, принципиальная схема поста и горелка для ручной сварки в среде инертных газов показаны на рис.3.13 -3.15.

Рис.3.13. Оборудование рабочего места электросварщика при механизированной сварке крупных изделий в среде инертных газов: 1 — баллон с инертным газом; 2 — газовый редуктор; 3 — источник сварочного тока; 4 — гибкие шланги; 5 — горелка; 6 — свариваемое изделие; 7 — подающий механизм; 8 — сварочные провода.


Рис.3.14. Схема поста для ручной сварки на постоянном токе с местной
защитой шва инертными газами: 1 — источник питания; 2 — балластный
реостат; 3 — горелка; 4 — баллон с газом; 5 — редукционный вентиль;
6 — расходомер газа; 7 — осциллятор.

Рис.3.15. Ручная горелка для сварки неплавящимся электродом: 1 — токоведущая цанга; 2 — сопло; 3 — газовая камера; 4 — колпак защитный; 5 — мундштук; 6 — газовый вентиль; 7 — газо- и токоподвод; 8 — рукоятка; 9 — провод; 10 — накидная гайка

В состав оборудования для ручной сварки постоянным током входят: источник сварочного тока, сварочная горелка, устройство возбуждения сварочной дуги, аппаратура управления сварочным циклом и газовой защитой. Перемещение сварочной горелки и подача присадочной проволоки в зону горения дуги производится вручную.

Полуавтоматическая сварка. Этот процесс перспективен для изделий из легированных нержавеющих сталей с криволинейными и короткими швами, особенно в монтажных условиях.

Принципиальная схема держателя полуавтомата приведена на рис. 3.16.

В процессе сварки горелка опирается на механически подаваемую от редуктора присадочную проволоку и перемещается благодаря ее отталкивающему действию. Это обеспечивает равномерную скорость сварки, равную скорости подачи проволоки.

Сварка может выполняться в нижнем горизонтальном и вертикальном положениях стыковых соединений.


Рис.3.16. Схема процесса полуавтоматической сварки:
1 — вольфрамовый электрод; 2 — присадочная проволока

Автоматическая сварка. может выполняться без присадочного материала и с присадочным материалом

Односторонняя сварка неплавящимся электродом встык без разделки кромок, без гарантированного зазора, без присадки, а также без применения приемов увеличения глубины проплавления (активирующих флюсов) может быть выполнена с полным проваром при толщине не более 5 мм.

Процесс сварки без присадочного материала чрезвычайно прост и получил достаточно широкое распространение. Образование сварочного шва без присадки происходит за счет расплавления стыкуемых кромок. Свариваемые заготовки собираются без зазора.

Процесс автоматической сварки с присадочной проволокой получил широкое распространение для соединения заготовок толщиной более 1,5 мм. Присадочная проволока подается с заданной скоростью, которая регулируется в достаточно широких пределах.

В состав оборудования для автоматической сварки входят: сварочная головка, устройство для перемещения сварочной головки или изделия, аппаратура управления механизмами автомата (рис.3.17,а).

Простейшая сварочная головка включает в себя: сварочную горелку, устройства для установочных перемещений горелки (настройка на шов, установка длины дуги, рис.3.17,б).

Обычно сварочная головка содержит и другие функциональные узлы: механизм для подачи присадочной проволоки, механизмы для установочных перемещений мундштука для подвода присадки к сварочной ванне, устройство для колебания горелки поперек стыка (колебатель); автоматический регулятор напряжения на дуге и т.п.

Головка может быть самоходной, устанавливаться на самоходную тележку-трактор (автомат тракторного типа) или укрепляться неподвижно, если сварочное движение осуществляется изделием (подвесная головка). На самоходных головках устанавливается привод перемещения вдоль линии сварки. Автоматы могут быть снабжены системами слежения за линией стыка изделия.

a
Рис.3.17. Общий вид аппарата АД238 для автоматической аргоно-дуговой сварки с присадкой (а) и схема сварочной головки Т451.01.01.000 (б): 1 — горелка; 2 — механизм подачи; 3 — привод; 4 — подвеска; 5 — кассета; 6 — тормозное устройство; 7 — суппорт двухкоординатный; 8 — корректор; 9 — подвеска
б

В качестве источников сварочного тока при сварке в среде инертных газов используют выпрямители, преобразователи и трансформаторы.

Качество защиты нагретого и расплавленного металла при сварке зависит не только от вида защитного газа, но и от способа защиты.

В производстве сварных конструкций находят применение три основных способа защиты свариваемого узла или зоны сварки от взаимодействия с воздухом: общая защита, местная защита и струйная защита.

При общей защите свариваемый узел полностью помещают в камеру, которая затем вакуумируется до разряжения 10 — 2 Па (для удаления воздуха) и заполняется защитным газом. При работе сварщик находится вне камеры. Сварку выполняют вручную, используя рукава-перчатки, соединенные с корпусом камеры, или автоматически с дистанционным управлением. Применение камер с общей защитой всего узла обеспечивает наиболее надежную защиту нагретого и расплавленного металла от взаимодействия с воздухом. Основные недостатки этих камер — ограниченный объем и относительная сложность эксплуатации (рис.3.18).


Рис.3.18. Двухкамерная установка повышенной производительности
для аргонодуговой сварки в контролируемой атмосферы

Для изготовления крупногабаритных конструкций находят применение обитаемые камеры с инертной атмосферой. В этом случае сварщик находится внутри камеры в специальном скафандре.

В опытном или единичном производстве применение камер с общей защитой, и тем более обитаемых, нецелесообразно из экономических соображений. В этих случаях для защиты металла шва и околошовной зоны применяют местные защитные камеры, которые устанавливают на свариваемые узлы с обеспечением герметичности разъемов при перемещении заготовок (рис.3.19).


Рис.3.19. Аргонодуговая сварка в камерах с местной защитой:
а — внешний вид камеры для сварки неповоротных стыков трубопроводов; б — установка для сварки поворотных стыков
деталей авиационных узлов; 1 — механизм перемещения электрода;
2 — 2 — вольфрамовый электрод и копир; 3 — откидная крышка-люк;
4 — свариваемая деталь; 5 — камера; 6 — сварочная головка.

Наиболее широко в сварочном производстве используется струйная защита, при которой защитные газы подают в зону сварки для оттеснения воздуха от нагретого и расплавленного металла. Как правило, вытекающая из сопла горелки сплошная струя защитного газа симметрична оси электрода (рис. 3.20).


Рис.3.20. Подача защитного газа в зону сварки

При сварке стыковых швов со струйной защитой воздух может поступать к переплавленному дугой металлу через зазор между свариваемыми деталями. Это вызовет окисление металла шва, может привести к образованию пор в шве. Для предупреждения этих дефектов применяют обдувку защитным газом обратной стороны шва, сварку ведут на плотно прилегающих со стороны шва подкладках, в которые подается защитный газ с регулируемым избыточным давлением (рис.3.21).

Технологические характеристики процесса сварки вольфрамовым электродом зависят главным образом от рода, полярности, величины сварочного тока, длины дуги, размеров и формы торца вольфрамового электрода.


Рис.3.21. Схема сборки стыковых соединений: 1 — сварочная горелка;
2 — свариваемое изделие; 3 — медная часть подкладки; 4 — стальная часть
подкладки; 5 — канал для защитного газа; 6 — прижим; 7 — канал для
охлаждающей воды

Сварка постоянным током прямой полярности характеризуется максимальной проплавляющей способностью. В диапазоне токов до 600 А доля тепловой мощности, вводимой в изделие, составляет 60 — 80 %; потери на нагрев вольфрамового электрода — около 5 %, а лучевые потери от столба дуги — 5 — 35 %.

При сварке постоянным током обратной полярности потери на нагрев неплавящегося электрода — анода — составляют около 50 % общей мощности дуги. Поэтому с энергетической точки зрения сварка током обратной полярности невыгодна. Концентрация нагрева в этом случае ниже, швы имеют меньшую глубину и большую ширину проплавления, чем при сварке на прямой полярности или переменным током. Преимуществом сварки дугой обратной полярности является эффективное разрушение оксидных пленок с обеспечением высокой чистоты поверхности сварочной ванны за счет развития катодного распыления. Процесс характеризуется хорошим сплавлением основного и присадочного металлов даже при нетщательной подготовке поверхности изделий под сварку.

Сварка переменным током является наиболее распространенным процессом при изготовлении конструкций из алюминиевых и магниевых сплавов. Очистка поверхностей от оксидов происходит в полупериоды обратной полярности.

В диапазоне сварочных токов 250 — 600 А существенную роль в проплавлении шва играет механическое воздействие дуги. Увеличение сварочного тока от 300 до 600 А при сварке, например стали Х18Н9Т толщиной 16 мм приводит к линейному возрастанию силового воздействия дуги с 6Ч10-2 до 15Ч10-2 Н. В связи с этим столб дуги углубляется в расплавленный металл, в результате чего уменьшается прослойка жидкого металла под дугой и улучшаются условия теплопередачи в основной металл. Однако глубина проплавления увеличивается

на 50 % (от 6 до 9 мм), а ширина возрастает

на 70 % (от 10 до 18 мм). Более медленный рост проплавляющего действия дуги связан с тем, что с увеличением сварочного тока одновременно растет диаметр столба дуги и расширяется пятно нагрева, а плотность теплового потока меняется незначительно.

Сварка в углекислом газе

В производстве сварных конструкций из низкоуглеродистых и низколегированных сталей широкое применение находит полуавтоматическая, меньше — автоматическая сварка в углекислом газе. Сущность сварки в среде CO2 состоит в том, что дуга горит в среде защитного газа, оттесняющего воздух от зоны сварки и защищающего расплавленный металл от кислорода и азота воздуха.

Полуавтоматическую сварку в углекислом газе применяют в единичном, мелкосерийном и реже — в серийном производстве для выполнения непротяженных швов изделий небольшой толщины.

Преимущества этого способа сварки: повышение производительности по сравнению с ручной сваркой в 1,2 — 1,5 раза; возможность сварки в любом пространственном положении и стыковых швов «на весу»; высокая маневренность и мобильность (по сравнению с автоматической сваркой); возможность визуального контроля за направлением дуги по стыку. Недостатки: сильное разбрызгивание металла при сварке на токах 200 — 400 А и необходимость удаления брызг с поверхности изделия; затруднено использование на открытом воздухе (на ветру) из-за сдувания защитного газа; внешний (товарный) вид шва хуже, чем при сварке под флюсом.

Анализ процессов, протекающих в газовой фазе реакционной зоны, дает основание утверждать, что углекислый газ является сильным окислителем и при сварке в CO2 формируется окислительная атмосфера, которая взаимодействует с металлом и легирующими элементами, окисляя их.

Растворяющийся в сплаве кислород может реагировать с примесями металла с образованием шлаков и газов.

В хвостовой части сварочной ванны шлак всплывает на поверхность металла, а образующиеся газообразные продукты могут служить причиной появления пор в металле шва.

Для связывания кислорода, растворенного в металле, необходимо применять электродные проволоки, содержащие раскислители, которые предохраняют от окисления легирующие добавки и подавляют процесс выгорания углерода свариваемого металла.

Металл, наплавленный при сварке в углекислом газе, чище по шлаковым включениям, и поэтому его пластические свойства несколько выше, чем при сварке под слоем флюса.

Режимы и техника сварки. К основным параметрам режима сварки относятся полярность тока (как правило обратная), диаметр электродной проволоки, сила тока, напряжение дуги, скорость сварки, вылет электрода (примерно равный расстоянию от торца горелки до свариваемого металла) и расход защитного газа.

Переменный и постоянный токи (прямой полярности) не применяются из-за недостаточной устойчивости процесса и неудовлетворительного качества и формы шва. При токе прямой полярности процесс сварки сопровождается большим разбрызгиванием и крупнокапельным переносом электродного металла.

При сварке в углекислом газе особо характерным является применение электродной проволоки малых диаметров (0,8 — 2,0 мм), тока высокой плотности и соответственно большой скорости плавления электрода. При сварке на форсированных режимах тонкими проволоками наиболее целесообразной является плотность тока в электроде 250-450 А/мм 2 .

Увеличение диаметра электродной проволоки (при всех прочих равных условиях) сопровождается существенным уменьшением коэффициента наплавки, некоторым увеличением ширины шва и уменьшением глубины проплавления основного металла.

Диаметр сварочной проволоки dэ выбирается в зависимости от толщины свариваемых заготовок δ:

δ, мм 0,5-1,0 1,0-2,0 2,0-4,0 5,0-8,0 8,0-1,2 12-18
dэ, мм 0,5-0,8 0,8-1,0 1,0-1,2 1,6-2,0 2,0 2,0-2,5

Параметром, оказывающим большое влияние на процесс сварки, является сварочный ток. Повышение силы тока вызывает увеличение глубины проплавления, при этом количество наплавленного металла возрастает медленнее, чем проплавление и доля электродного металла в металле шва существенно уменьшается. Последнее значительно увеличивает возможность появления горячих трещин в металле швов, выполненных на сталях с повышенным содержанием углерода. Ширина шва с повышением силы тока сначала увеличивается, а затем несколько уменьшается. Оптимальные режимы сварки соответствуют максимальной ширине шва.

С увеличением напряжения дуги глубина проплавления основного металла уменьшается, а ширина шва и количество наплавленного и проплавленного металла слегка увеличиваются. Повышение напряжения дуги сопровождается усилением разбрызгивания жидкого металла и ухудшением газовой защиты зоны сварки, приводящим к порам и повышению содержания газов в металле швов.

С увеличением скорости сварки уменьшаются размеры швов и количество наплавленного и проплавленного металлов.

Рабочий пост для сварки плавящимся электродом в среде углекислого газа должен быть снабжен: источником постоянного тока, полуавтоматом, баллоном с газом, предредукторным осушителем, подогревателем газа, редуктором, ротаметром, амперметром и вольтметром (рис. 3.22).

Для сварки наиболее удобна жидкая углекислота, выпус-каемая по ГОСТ 8050-85 с содержанием CO2 не менее 99,5 %. В стандартный баллон заливают 25 л жидкой углекислоты, которая при испарении дает 12,5 м 3 газа. Предредукторный осушитель предназначен для очистки газа от влаги, которая может содержаться в баллоне. Осушение газа осуществляется адсорбентами: медным купоросом, силикагелем или алюмогелем; наибольшей глубиной осушки и влагоемкостью обладает цеолит марки NaA-2KT.


Рис.3.22. Общий вид поста сварки плавящимся электродом
в углекислом газе: 1 — источник сварочного тока; 2 — подогреватель газа;
3 — шкаф управления; 4 — полуавтомат; 5 — горелка; 6 — кабели
(сварочные); 7 — кабель (управления); 8 — редуктор газовый

Непрерывный отбор из баллона газообразной CO2 сопровождается резким уменьшением ее температуры и давления вследствие поглощения скрытой теплоты испарения при переходе CO2 из жидкой фазы в газообразную. При отборе газа с расходом свыше 20 л/мин CO2 превращается в сухой лед. Для предохранения редуктора от замерзания используют подогреватель газа.

Непрерывный отбор из баллона газообразной CO2 сопровождается резким уменьшением ее температуры и давления вследствие поглощения скрытой теплоты испарения при переходе CO2 из жидкой фазы в газообразную. При отборе газа с расходом свыше 20 л/мин CO2 превращается в сухой лед. Для предохранения редуктора от замерзания используют подогреватель газа.

В полуавтоматах для дуговой сварки осуществляется механизированная подача сварочной проволоки.

Основными элементами полуавтоматов являются: держатель, гибкие шланги, механизм подачи сварочной проволоки, кассета со сварочной проволокой и шкаф управления. Конструктивные особенности как самих полуавтоматов, так и их отдельных элементов зависит в основном от назначения (специализации) полуавтоматов.

Наиболее важный элемент полуавтомата — механизм подачи проволоки. По способу подачи проволоки различают полуавтоматы толкающего и тянущего типа.

Наиболее распространены полуавтоматы толкающего типа. Электродная проволока подается путем проталкивания ее через гибкий шланг (направляющий канал) к держателю; устойчивая подача проволоки возможна только при достаточной ее жесткости (мягкая и тонкая проволока сминается).

В полуавтоматах тянущего типа механизм размещен на держателе. В этом случае проволока протаскивается через гибкий шланг. Тянущая система обеспечивает устойчивую подачу мягкой и тонкой проволоки. Встречаются полуавтоматы с двумя синхронно работающими механизмами подачи. Один из них толкает, а другой протаскивает сварочную проволоку. Для сварки выпускают полуавтоматы, рассчитанные на номинальные токи 150 — 600А для проволок диаметром 0,8 — 3,5 мм со скоростями подачи 1,0 — 0,17 м/мин.

Основные конструктивные элементы горелки для полуавтоматической сварки в CO2 показаны на рис.3.23.

Рис.3.23. Горелка с шлангом для полуавтоматической сварки в CO2: 1 — спираль; 2 — оболочка; 3 — слой изоляции; 4 — провод; 5 — электродная проволока; 6 — газовая струя; 7 — наконечник; 8 — сопло; 9 — мундштук

Полуавтоматы комплектуются источниками питания — выпрямителями с жесткой характеристикой.

Плазменная сварка

Плазменная сварка относится к дуговым видам сварки, при этом в качестве источника нагрева свариваемых заготовок используется сжатая дуга.

Первое упоминание о разработке плазменной сварки относится к 1950-м годам. В течение 1960-х годов были предложены несколько принципов формирования плазменно-газового потока, разработаны и внедрены оборудование и технология этого процесса в производство. В настоящее время постоянно осуществляется развитие, совершенствование плазменной сварки и поиск новых областей её применения как у нас в стране, так и за рубежом.

При обычной дуговой сварке дуга горит свободно между электродом и изделием. Однако, если при помощи каких-либо приемов не дать возможность дуге занять ее естественный объем, принудительно сжать ее, то температура дуги значительно повысится. В частности, можно ограничить диаметр столба дуги, пропустив ее через сопло малого диаметра. При этом плазмообразующий газ, вытекая через сопло горелки, сжимает дугу. Часть газа, проходя через столб дуги, нагревается, ионизируется и выходит из сопла в виде плазменной струи. Наружный слой, омывающий столб дуги, остается относительно холодным и создает электрическую и тепловую изоляцию между дугой и соплом, предохраняя его от разрушения.

Плазмой принято считать частично или полностью ионизированный газ, состоящий из нейтральных атомов и молекул, ионов и электронов. Типичное плазменное состояние вещества имеет место в электрическом газовом разряде.

Плазма газового разряда в зависимости от состава среды характеризуется температурами от 2000 — 3000 0 С до 40000 — 50000 0 С.

Плазменные струи получают в плазменных горелках, которые называют также плазмотронами. В промышленности находят применение, главным образом, дуговые плазменные горелки постоянного тока. Наиболее распространены способы получения плазменных струй путем интенсивного охлаждения газовым потоком столба дуги, горящей в сравнительно узком водоохлаждаемом канале плазменной горелки.

В инженерной практике используют две основные принципиальные схемы дуговых плазменных горелок:

Горелки прямого действия для сварки плазменной дугой, в которых одним из электродов является обрабатываемый материал (рис. 3.24, а). В этом случае используют два энергетических источника: плазменную струю и электрически активное пятно дуги. Внутренний КПД такой горелки, т.е. использование подведенной к ней электроэнергии, достигает 60 — 80 %.

Горелки косвенного действия для сварки плазменной струей (рис.3.24, б, в). Для снижения тепловой нагрузки на электроды применяют плазменные горелки с магнитным закручиванием дуги. Максимальные значения внутреннего КПД таких горелок (при больших расходах газа) достигают 50 — 70 %. Часть энергии дуги расходуется на нагрев электродов разряда, а также рассеивается в окружающее пространство вследствие лучистого и конвективного теплообмена.


Рис.3.24. Принципиальные схемы дуговых плазменных горелок
(плазмотронов) для получения: а — плазменной дуги, б и в — плазменной
струи. 1 — электрод, 2 — канал, 3 — охлаждающая вода, 4 — столб дуги,
5 — сопло, 6 — плазменная струя, Е — источник тока

Состав плазмообразующего газа (аргон, гелий, азот и пр.) выбирают в зависимости от требований, предъявляемых к процессу. Электроды изготавливают обычно из меди и вольфрама. Стенки камеры защищены от теплового воздействия дуги слоем сравнительно холодного газа.

Основными параметрами регулирования тепловых характеристик плазменной струи являются сила тока и длина дуги, а также расход плазмообразующего газа. Увеличение силы тока и длины дуги приводит к возрастанию температуры струи; повышение расхода плазмообразующего газа при больших его значениях снижает среднемассовую температуру струи.

Применение плазменной сварки. Исследования в области плазменных технологий как в нашей стране, так и за рубежом были направлены на решение проблем авиа- и ракетостроения, электроники, ядерной энергетики, криогенной техники. Основное внимание уделялось улучшению качества сварки изделий из алюминия, коррозионностойких и жаропрочных сплавов и титана в большом диапазоне толщин, различных типов соединений. В конце 60-х годов сварка проникающей плазменной дугой переменного тока была использована в СССР в производстве алюминиевых топливных баков ракет. Аналогичная технология спустя 10 лет была внедрена в США взамен аргонодуговой сварки наружных алюминиевых баков на многоразовом космическом корабле «Шаттл». Этой технологии отводят большую роль и при строительстве космических станций. В 1989 г. НАСА (NASA) выбрала технологию плазменной сварки для изготовления твердотопливных двигателей космической ракеты для доставки конструкций международной космической станции «Freedom».

Преимущества плазменной сварки состоят в следующем:

— По сравнению с аргонодуговой плазменно-дуговая сварка отличается более стабильным горением дуги. При этом обеспечивается более равномерное проплавление кромок.
— По проплавляющей способности плазменная дуга занимает промежуточное положение между электронным лучом и дугой, горящей в аргоне.
— Столб дуги и струя плазмы имеют цилиндрическую форму, поэтому площадь поверхности металла, через которую осуществляется теплопередача от струи к металлу, не зависит от расстояния между электродом горелки и изделием.
— Благодаря цилиндрической форме столба дуги процесс плазменно-дуговой сварки менее чувствителен к изменению длины дуги, чем аргонодуговая сварка. Изменение длины дуги конической формы (при аргонодуговой сварке) всегда ведет к изменению диаметра пятна нагрева, а следовательно, и к изменению ширины шва. Плазменная сварка позволяет иметь практически постоянный диаметр пятна и дает возможность стабилизировать проплавление основного металла. Это свойство плазменной дуги с успехом используется при сварке очень тонких листов.

Отдельно следует выделить сварку микроплазменной дугой.

Микроплазменной дугой (сила тока 0,1. 15А) сваривают листы толщиной 0,025. 0,8 мм из углеродистой и нержавеющей стали, меди, инконеля, хастеллоя, ковара, титана, тантала, молибдена, вольфрама, золота и др.

Источники питания позволяют вести процесс в непрерывном и импульсном режимах.

По сравнению с аргонодуговой сваркой микроплазменная имеет следующие важные преимущества:

— изменение длины микроплазменной дуги оказывает значительно меньшее влияние на качество сварного соединения деталей малых толщин;
— дежурная плазменная дуга уверенно зажигается при токах менее 1 А;
— облегчается доступ к объекту сварки и улучшается зрительный обзор рабочего пространства (на токе

15 А длина дуги достигает 10 мм).

Наиболее часто встречающиеся типы соединений при микроплазменной сварке — соединения с отбортовкой.

Микроплазменная сварка находит широкое применение в радиоэлектронике и приборостроении для сварки тонких листов и фольги. В авиационной промышленности с помощью микроплазменной сварки изготавливают детали толщиной 0,1. 0,5 мм типа сильфонов, тонкостенных трубопроводов, деталей приборов из легированных сталей, алюминиевых сплавов, тугоплавких металлов. В последнее время микроплазменная сварка широко применяется в производстве и ремонте деталей электроники и космонавтики, измерительных инструментов, часов (в том числе ручных), ювелирных изделий, металлических фильтров, термопар и тонкостенных трубок, зубопротезировании.

Электрошлаковая сварка

Электрошлаковая сварка (ЭШС) — процесс образования неразъёмного соединения, при котором расплавление основного и присадочного металла осуществляется за счёт тепла, выделяемого при прохождении электрического тока через расплавленный флюс. При этом слой расплавленного флюса служит защитой металла сварочной ванны от взаимодействия с кислородом и азотом воздуха. Схемы процесса и установка ЭШС приведены на рис. 3.25.


Рис.3.25. Трёхэлектродная установка VUZ-ETZ-450 (а) и основные
схемы процессов электрошлаковой сварки: б — сварка одним
электродом металла толщиной до 60 мм; в — трёхфазная сварка металла
толщиной 450 мм тремя электродами с возвратно-поступательным
движением; г — многоэлектродная сварка металла практически
неограниченной толщины; д — сварка пластинчатыми электродами;
е — сварка плавящимся мундштуком; ж — контактно-шлаковая сварка стержней.

Шлаковая ванна образуется (наводится) путем расплавления флюса, заполняющего пространство между кромками основного металла и специальными охлаждаемыми водой приспособлениями-ползунами, плотно прижатыми к поверхности свариваемых деталей.

Флюс плавится дугой, возникающей в начальный период сварки между основным металлом и электродной проволокой. После расплавления определенного количества флюса дуга шунтируется расплавленным шлаком и гаснет. Длина шлаковой ванны практически равна толщине основного металла, а ширина определяется зазором между свариваемыми кромками. Глубину шлаковой ванны выбирают в зависимости от технологических условий (состава основного металла, режима сварки и др.).

Необходимая для осуществления шлакового процесса энергия получается от источника питания с жёсткой характеристикой переменного или постоянного тока, подсоединяемого к основному металлу и плавящемуся электроду (электродам), вводимому в зазор между свариваемыми кромками и погруженному в шлаковую ванну. Электрод располагают посередине шлаковой ванны или перемещают в зазоре от одной поверхности свариваемых деталей к другой. Ток к электроду подводится при помощи мундштука. Проходя через шлаковую ванну, ток нагревает ее до температуры

2000 0 С, превосходящей температуру плавления основного и электродного металлов.

Шлак расплавляет кромки основного металла и электрод, который подается в шлаковую ванну со скоростью, равной скорости его плавления. Расплавленные электродный и основной металлы стекают на дно шлаковой ванны, образуя сварочную (металлическую) ванну. По мере удаления источника нагрева происходит кристаллизация металла сварочной ванны. Расплавленный шлак, находящийся над металлической ванной, достаточно надежно защищает металл от воздействия воздуха. По мере заполнения зазора между свариваемыми кромками мундштук при помощи специального привода передвигается вдоль свариваемого изделия.

Шлаковая ванна, наведенная в начале сварки, по мере формирования шва перемещается от его начала детали к концу, при этом соприкасаясь с охлаждёнными ползунами, образует на них тонкую шлаковую корку, исключая непосредственный контакт расплавленного металла с поверхностью ползуна.

Расход флюса при этом способе сварки невелик и не превышает 5 % массы наплавленного металла. Ввиду малого количества шлака легирование наплавленного металла происходит, в основном, за счёт электродной проволоки. При этом доля основного металла в сварном шве может быть снижена до 10 — 20 %.

По сравнению со сварочной дугой шлаковая ванна является менее концентрированным источником тепла, поэтому ЭШС характеризуется более медленным нагревом и охлаждением. Значительное время пребывания металла в расплавленном состоянии способствует улучшению условий удаления газов и неметаллических включений из металла шва.

Электрошлаковый процесс протекает устойчиво даже при плотностях тока j около 0,1 А/мм 2 (при ручной дуговой сварке покрытыми электродами j = 10 — 30 А/мм 2 ; при автоматической под слоем флюса j = 200 А/мм 2 ; при сварке плавящимся электродом в защитных газах j = 400 А/мм 2 ), поэтому возможно использование электродов достаточно большого сечения.

Электрошлаковую сварку, как правило, ведут при вертикальном положении изделий. Зеркало сварочной ванны, так же как и при сварке в нижнем положении, расположено в горизонтальной плоскости, а перемещение расплавленного электродного и основного металлов происходит в направлении сил тяжести.

Обычно сварка начинается в прикреплённом к нижней части стыка металлическом кокиле длиной 50 — 100 мм, где возбуждается дуговой процесс. Для того чтобы вывести шлаковую ванну и предотвратить образование усадочных трещин и рыхлоты в конце шва, на изделии устанавливаются выходные планки длиной около 100 мм (рис.3.26).


Рис.3.26. Начальные (а) и выходные (б) планки,
применяемые при электрошлаковой сварке

Электрошлаковая сварка позволяет выполнять не только прямолинейные, но и кольцевые швы (рис.3.28). Вращение изделия осуществляется на роликовой опоре или другим способом.


Рис.3.27. Виды соединений, выполняемых электрошлаковой сваркой:
а — стыковые; б — тавровые; в — угловые; d — толщина металла;
b — ширина зазора; bш — ширина шва


Рис.3.28. Схема электрошлаковой сварки кольцевого шва: а — сварка
средней части шва; б — замыкание шва; 1 — выходной кокиль;
2 — разделка начала шва для его замыкания; 3 — заходная планка; a — угол
перемещения ползуна к началу замыкания; h — высота подъёма
аппарата к началу замыкания шва

Сварка электронным лучом

Электронно-лучевая сварка (ЭЛС) основана на использовании для нагрева энергии электронного луча.

Сущность данного процесса состоит в использовании кинетической энергии электронов, движущихся в высоком вакууме с большой скоростью. При бомбардировке электронами поверхности металла подавляющая часть кинетической энергии электронов превращается в теплоту, которая используется для расплавления металла.

Для сварки необходимо получить свободные электроны, сконцентрировать их и сообщить им большую скорость с целью увеличения их энергии, которая должна превратиться в теплоту при торможении в свариваемом металле.

Получение свободных электронов осуществляется путём применения раскаленного металлического катода, эмитирующего (испускающего) электроны. Ускорение электронов обеспечивается электрическим полем с высокой разностью потенциалов между катодом и анодом. Фокусировка — концентрация электронов — достигается использованием кольцевых магнитных полей. Резкое торможение электронного потока происходит автоматически при внедрении электронов в металл. Электронный луч, используемый для сварки, создается в специальном приборе — электронной пушке.

Электронная пушка представляет собой устройство, с помощью которого получают узкие электронные пучки с большой плотностью энергии (рис.3.29).

Пушка имеет катод (1), который размещен внутри прикатодного электрода (2). На некотором удалении от катода находится ускоряющий электрод — анод (3) с отверстием. Прикатодный и ускоряющий электроды имеют форму, обеспечивающую такое строение электрического поля между ними, которое фокусирует электроны в пучок с диаметром, равным диаметру отверстия в аноде. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроды, эмиттированные катодом, на пути к аноду приобретают значительную скорость и, соответственно, кинетическую энергию. После ускоряющего электрода электроны движутся равномерно. Питание пушки электрической энергией осуществляется от высоковольтного источника постоянного тока. Электроны имеют одинаковый заряд, поэтому они отталкиваются друг от друга, вследствие чего диаметр пучка увеличивается, а плотность энергии в пучке уменьшается.


Рис. 3.29. Схема устройства электронно-лучевой пушки

Для увеличения плотности энергии в луче после выхода из анода электроны фокусируются магнитным полем в специальной магнитной линзе (4). Сфокусированные в плотный пучок летящие электроны ударяются с большой скоростью о поверхность изделия (6), при этом кинетическая энергия электронов, вследствие торможения в веществе, превращается в теплоту, нагревая металл до высоких температур.

Для перемещения луча по свариваемому изделию на пути электронов помещают магнитную отклоняющую систему (5), позволяющую направлять электронный луч точно по сварочному стыку.

Для обеспечения беспрепятственного движения электронов от катода к аноду и далее к изделию, для тепловой и химической изоляции катода, а также для предотвращения возможности дугового разряда между электродами в установке создается высокий вакуум не хуже 1,3·10 -2 Па (1·10 -4 мм рт. ст.), обеспечиваемый вакуумной системой установки.

Работа, затраченная электрическим полем на перемещение заряда из одной точки в другую, равна произведению величины заряда (в данном случае — заряд электрона «е») на разность потенциалов между этими двумя точками «U»: А = е·U. Эта работа затрачивается на сообщение электрону кинетической энергии Е = me·v 2 /2, то есть

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

источник

Adblock
detector