Меню Рубрики

Механизированная сварка в углекислом газе обозначение

Аббревиатуры обозначения видов сварки

Многим известны, теперь уже общепринятые английские обозначения видов сварки.
Хочется собрать все обозначения вместе, напишите известные вам.

Методы ручной сварки в советских ГОСТах никак не обозначались. Наиболее употребительные сокращения:

РДС ручная дуговая сварка (имеется в виду сварка покрытым штучным электродом)

АДС или РАДС аргонодуговая сварка или ручная аргонодуговая сварка (сварка неплавящимся электродом в инертном газе, производимая вручную)

Наиболее полная и проработанная система сокращений приведена в двух стандартах на сварку в защитном газе: ГОСТ 14771-76 «Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры» и ГОСТ 23518-79 «Дуговая сварка в защитном газе. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры». В этих стандартах дается следующая система аббревиатур:

ИН сварка в инертных газах неплавящимся электродом без присадочного металла

ИНп сварка в инертных газах неплавящимся электродом с присадочным металлом

ИП сварка в инертных газах и их смесях с углекислым газом и кислородом плавящимся электродом

УП сварка в углекислом газе и его смеси с кислородом плавящимся электродом

Также весьма проработана система обозначений в ГОСТ 8713-79 «Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры». Метод сварки под флюсом обозначается буквой «Ф» с прибавлением степени автоматизации — автоматическая («А») или механизированная («М»). таким образом, автоматическая сварка под флюсом плавящимся электродом обозначалась как «АФ» или «АДФ» с прибавлением буквы, обозначающей разновидность метода:

АФ автоматическая на весу

АФф автоматическая на флюсовой подушке

АФм автоматическая на флюсомедной подкладке

АФо автоматическая на остающейся подкладке

АФп автоматическая на медном ползуне

АФш автоматическая с предварительным наложением подварочного шва

АФк автоматическая с предварительной подваркой корня шва.

МФ механизированная на весу

МФо механизированная на остающейся подкладке

МФш механизированная с предварительным наложением подварочного шва

МФк механизированная с предварительной подваркой корня шва

Однако уже в других стандартах сокращения, указывающие на методы сварки, совершенно иные. Так, ГОСТ 16098-80 «Соединения сварные из двуслойной коррозионностойкой стали. Основные типы, конструктивные элементы и размеры» обозначает ручную дуговую сварку просто буквой «Р», а сварку в защитных газах буквой «З». В ГОСТ 16037-80 «Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры» введены два метода сварки в защитных газах:

ЗП дуговая сварка в защитном газе плавящимся электродом

ЗН дуговая сварка в защитном газе неплавящимся электродом

При этом ручная дуговая сварка также обозначена буквой «Р», а автоматическая сварки под флюсом — буквой «Ф»

Электрошлаковая сварка обозначалась просто «ЭШ» или «Ш»; иногда расшифровывался метод:

ШЭ проволочным электродом

ШМ плавящимся мундштуком

ШП электродом, сечение которого соответствует по форме поперечному сечению сварочного пространства

Даже ГОСТ 29297-92 «Сварка, высокотемпературная и низкотемпературная пайка, пайко-сварка металлов. Перечень и условные обозначения процессов», принятый как международный стандарт ИСО 4063-90, устанавливая наименования и кодификацию методов сварки, не дает сокращенных названий. Между тем знание таких сокращений существенно облегчает понимание иностранной переводной литературы, в частности, каталогов сварочного оборудования.

В настоящее время наиболее распространенными и общепризнанными являются следующие сокращения.

MMA Manual Metal Arc или MMAW Manual Metal Arc Welding ручная дуговая сварка штучными покрытыми электродами

Для того, что мы привыкли называть «аргонодуговой сваркой», существует несколько различных обозначений:

TIG Tungsten Inert Gas дуговая сварка неплавящимся электродом в среде инертного защитного газа; чаще всего используется для указания на ручную сварку

GTA Gas Tungsten Arc указывает на образование дуги при помощи вольфрамового электрода

WIG Wolfram Inert Gas обозначение метода TIG, используемое в немецкоязычной литературе

GTAW Gas Tungsten Arc Welding обозначение, используемое для указания на применение метода TIG при автоматической (роботизированной) сварке

TIG-CW Cold Wire обозначение, используемое для указания на применение метода TIG с подачей нейтральной (холодной) присадочной проволоки

TIG-HW Hot Wire обозначение, используемое для указания на применение метода TIG с подачей электропроводящей (подогретой) присадочной проволоки

TIG-DC Direct Current обозначение, используемое для указания на применение метода TIG на постоянном токе

TIG-AC Alternating Current обозначение, используемое для указания на применение метода TIG на переменном токе

Для «полуавтоматической сварки» также есть несколько различных обозначений:

MIG Metal Inert Gas или MIGW Metal Inert Gas Welding дуговая сварка плавящимся металлическим электродом (проволокой) в среде инертного защитного газа с автоматической подачей присадочной проволоки

MAG Metal Active Gas или MAGW Metal Active Gas Welding дуговая сварка плавящимся металлическим электродом (проволокой) в среде активного защитного газа с автоматической подачей присадочной проволоки

GMA Gas Metal Arc указывает на образование дуги из ионов металла присадочной проволоки

GMAW Gas Metal Arc Welding обозначение, используемое для указания на применение метода MIG/MAG при автоматической (роботизированной) сварке

FCAW Flux Core Arc Welding дуговая сварка плавящейся порошковой проволокой с автоматической подачей присадочной проволоки; проволока самозащитная или для сварки в среде защитного газа

SAW Submerged Arc Welding или SMAW Submerged Metal Arc Welding буквально — сварка «погруженной дугой»; автоматическая дуговая сварка металлическим электродом (проволокой) под слоем флюса

UP Under Pulver обозначение метода SAW, используемое в немецкоязычной литературе

PAW Plasma Arc Welding плазменная сварка (сварка сжатой дугой) или PTAW Plasma Transferred-Arc Welding плазменная сварка дугой прямого действия

Также аббревиатуры плазменной сварки могут быть дополнены обозначениями, идентичными для сварки TIG:

PAW-CW Cold Wire плазменная сварка с подачей нейтральной (холодной) присадочной проволоки

PAW-HW Hot Wire плазменная сварка с подачей электропроводящей (подогретой) присадочной проволоки

PAW-DC Direct Current плазменная сварка на постоянном токе

PAW-AC Alternating Current плазменная сварка на переменном токе

Выше приведены только обозначения наиболее распространённых методов электрической дуговой сварки плавления, встречающиеся в иностранной или переводной технической литературе.

MIG/MAG — дуговая сварка плавящимся электродом в инертном (MIG) или в активном (MAG) газе.

TIG – такая аббревиатура применяется в Европе. TIG — Tungsten Inert Gas (tungsten – в переводе с английского: вольфрам).

WIG – обозначение tig сварки в Германии. WIG – Wolfram-Inertgasschweiβen (wolfram – в переводе с немецкого: вольфрам).

TIG-DC — режим на основе постоянного тока (DC — direct current – в переводе: постоянный ток).

TIG-AC — дуговая сварка на основе переменного тока (AC – alternating current — в переводе: переменный ток).

TIG-HF — режим бесконтактного возбуждения дуги высокочастотным и высоковольтным разрядом (HF — high frequency – в переводе с английского: высокая частота).

MMA — Manual Metal Arc — ручная дуговая сварка штучными (покрытыми) электродами. В советской технической литературе обычно использовалось сокращение РДС.
TIG — Tungsten Inert Gas — ручная дуговая сварка неплавящимся электродом в среде инертного защитного газа. Поскольку чаще всего в качестве материала для неплавящихся электродов используется вольфрам, в немецкоязычной литературе используют сокращение WIG (Wolfram Inert Gas); иногда встречается обозначение GTA (Gas Tungsten Arc). Может осуществляться с ручной или автоматической подачей присадочной проволоки или без нее. Так как наиболее распространено применение в качестве защитного газа аргона, за этим методом закрепилось название «аргоно-дуговая сварка», или АДС. Следует, однако, заметить, что такое наименование не совсем правильно, потому что при сварке методом TIG в качестве защитного газа могут использоваться также гелий, азот или различные газовые смеси; существует также метод атомно-водородной сварки, схожий по своей физической сущности с методом TIG; кроме того, сварка с использованием аргона в качестве защитного газа может вестись и с применением плавящегося электрода. При описании оборудования для сварки методом TIG упоминание самого метода сварки обычно дополняют упоминанием рода тока сварки: DC (Direct Current) — постоянный ток — или AC/DC (Alternating Current/Direct Current) — переменный/постоянный ток.
MIG/MAG — Metal Inert/Active Gas — дуговая сварка плавящимся металлическим электродом (проволокой) в среде инертного/активного защитного газа с автоматической подачей присадочной проволоки. Это полуавтоматическая сварка в среде защитного газа — наиболее универсальный и распространенный в промышленности метод сварки. Иногда этот метод сварки обозначают GMA (Gas Metal Arc). Применение термина «полуавтоматическая» не вполне корректно, поскольку речь идет об автоматизации только подачи присадочной проволоки, а сам метод MIG/MAG с успехом применяется при автоматизированной и роботизированной сварке. Словосочетание «в углекислом газе», к которому привыкли многие специалисты, умышленно опущено, так как при этом методе все чаще используются многокомпонентные газовые смеси, в состав которых помимо углекислого газа могут входить аргон, кислород, гелий, азот и другие газы.
GMAW — Gas Metal Automatic Welding — автоматическая дуговая сварка металлическим электродом (проволокой) в среде защитного газа. Так некоторые производители обозначают автоматизированное (роботизированное) применение метода MIG/MAG.
GTAW — Gas Tungsten Automatic Welding — автоматическая дуговая сварка неплавящимся электродом в среде инертного защитного газа. Обозначение автоматизированного (роботизированного) применения метода TIG. Может осуществляться как с автоматической подачей присадочной проволоки, так и без нее.
SMAW — Submerged Metal Automatic Welding — автоматическая дуговая сварка металлическим электродом (проволокой) под слоем флюса.
FCAW — Flux Core Arc Welding — дуговая сварка плавящейся порошковой проволокой (самозащитной или в среде защитного газа) с автоматической подачей присадочной проволоки. Метод может быть осуществлен в собственно «полуавтоматическом» варианте, а также при автоматизированном (роботизированном) применении.
Orbital Welding — орбитальная сварка. Под этим термином понимается автоматическая дуговая сварка кольцевых неповоротных швов с помощью специальных сварочных горовок или самоходных механизмов. При этом обычно применяют методы GTAW (TIG) или GMAW (MIG/MAG).

FCAW (Flux Core Arc Welding) Это обозначение означает дуговую сварку, которая осуществляется с помощью порошковой проволоки. Данный метод можно осуществить в автоматизированном или полуавтоматическом варианте.

Из Википедии:
Дуговая сварка вольфрамовым электродом в англоязычной литературе известна как gas tungsten arc welding (GTA welding, TGAW) или tungsten inert gas welding (TIG welding, TIGW), в немецкоязычной литературе — wolfram-inertgasschweißen (WIG).
В англоязычной иностранной литературе именуется как gas metal arc welding (GMA welding, GMAW), в немецкоязычной литературе — metallschutzgasschweißen (MSG). Разделяют сварку в атмосфере инертного газа (metal inert gas, MIG) и в атмосфере активного газа (metal active gas, MAG).
Ручная дуговая сварка обозначается кодом 111 по стандарту ISO 4063, в русскоязычной литературе используется обозначение РД, в англоязычной — SMAW (от англ. shielded metal arc welding) или MMA (от англ. manual metal arc welding).

Спасибо, товарищи, вот, практически, и готов материал для соответствующего раздела в теории.

источник

Общепринятые обозначения полуавтоматической сварки

MAG – сварка в среде активного газа
MIG – сварка в среде инертного газа

Механизированная сварка в углекислом газе

Механизированная сварка в углекислом газе (СО2) является основной и наиболее распро­страненной технологией сварки плавлением на предприятиях машиностроительной от­расли. Она является экономичной, обеспечивает достаточно высокое качество сварных швов, особенно при сварке низкоуглеродистых сталей, возможна в различных пространст­венных положениях, требует более низкой квалификации сварщика, чем ручная дуговая сварка.

Рис.6 Полуавтоматическая сварка, схема процесса

Защитный газ, выходя из сопла, вытесняет воздух из зоны сварки. Сварочная проволока подается вниз роликами, которые вращаются двигателем подающего механизма. Подвод сварочного тока к проволоке осуществляется через скользящий контакт.

Учитывая, что защитный газ активный и может вступать во взаимодействие с расплавлен­ным металлом, полуавтоматическая сварка в углекислом газе имеет ряд особенностей.

Особенности сварки в среде углекислого газа.

Углекислый газ является активным газом. При высоких температурах происходит диссо­циация (разложение) его с образованием свободного кислорода:

Молекулярный кислород под действием высокой температуря сварочной дуги диссоции­рует на атомарный по формуле:

Атомарный кислород, являясь очень активным, вступает в реакцию с железом и приме­сями, находящимися в стали, по следующим уравнениям:

Чтобы подавит реакцию окисления углерода и железа при сварке в углекислом газе, в сва­рочную ванну вводят раскислители (марганец и кремний), которые тормозят реакции окисления и восстанавливают оксиды по уровням:

Образующиеся оксиды кремния и марганца переходят в окисную пленку.

Исходя из этого при сварке в углекислом газе малоуглеродистых и низкоуглеродистых сталей необходимо применять кремний-марганцовистые проволоки, а для сварки легиро­ванных сталей – специальные проволоки.

В соответстии с ГОСТ 2.312-72 обозначение сварных швов следующее:

ГОСТ 14771-76-Т1-УП- 6-

Выбор и расчет режимов сварки

Для сварки низкоуглеродистой стали Ст3пс при помощи механизированной сварки в СО2 используют следующие режимы:

· диаметр сварочной проволоки;

· марка сварочной проволоки;

· скорость подачи сварочной проволоки;

· вылет электродной проволоки.

Режим сварки выбираем в зависимости от толщины сварочного материала, типа соедине­ния, положения шва в пространстве.

Сварку выполняем на постоянном токе обратной полярности (улучшается устойчивость горения дуги, формирование шва, меньше разбрызгивания металла электродной прово­локи).

Сварку следует выполнять более короткой дугой.

Для сварки стали Ст3пс применяем омедненную сварочную проволоку марки Св-08Г2С по ГОСТ 2246-70 с повышенным содержание марганца и кремния. Химический состав проволоки Св-08Г2С и ее расшифровка:

0.8 – содержание углерода 0,05 – 0,11%;

Г2 – содержание марганца 1,8 – 2,1%;

С – содержание кремния 0,70 – 0,95%;

S – содержание серы менее > 0,025%;

P – содержание фосфора менее > 0.030%.

Обозначение сварных швов в соответствии с ГОСТ2.312-72 приведено на рисунке 7.

Для предотвращения сварочных деформаций будем использовать сварочное приспособле­ние. Сборку узла осуществляем в следующем порядке:
1.Уложить на упоры приспособления детали позиции 2 две штуки, выдерживая размер 50мм.

2.Установить в приспособление две детали позиции 1, зажать каждую деталь в трех точ­ках пневмозажимами.

3. Выполнить прихватку двух деталей позиции 2 к двум деталям позиции 1 в восьми точ­ках длинной 20мм и высотой 5мм.

Прихватки должны выполняться теми же сварщиками, которые будут сваривать эти кон­струкции.

Сварку прихваток производим на следующих режимах:

Тол­щина св. ме­талла, мм Поляр­ность Поло­жение сварки Марка св. прово­локи св. прово­локи, мм Сила св. тока Iсв, А Напря­жение дуги Uд, В Ско­рость сварки Vсв, м/ч Рас­ход СО2 Q, л/мин Длина прих-ваток, мм Ши­рина при­хваток, мм
6,0 обрат­ная ниж­нее Св-08Г2С 1,6 230-260 28-30 26-28 16-18 20 5

Затем поверхность прихваток следует очистить от шлака и загрязнений, а также проверить на наличие дефектов, которые в случае обнаружения удаляются абразивным инструмен­том.

Сварку выполняем на режимах, приведённых в таблице 7.

Тол­щина св. ме­талла, мм Поляр­ность Поло­жение сварки Число слоев Марка св. прово­локи св. прово­локи, мм Сила св. тока Iсв, А Напря­жение дуги Uд, В Ско­рость сварки Vсв, м/ч Рас­ход СО2 Q, л/мин Вылет св. проволоки Катет шва,
6,0 обрат­ная ниж­нее 1 Св-08Г2С 1,6 230-260 28-30 26-28 16-18 15-20 7

Дата добавления: 2018-08-06 ; просмотров: 960 ; ЗАКАЗАТЬ РАБОТУ

источник

Механизированная сварка в среде углекислого газа

Сущность способа сварки в среде углекислого газа. Сварка в среде углекислого газа (СО2) является разновидностью дуговой сварки. Схема сварочного процесса приведена на рис. 10.9.

Рис. 10.9. Способ сварки в среде СО2

1 – сварочная проволока; 2 – токоведущий мундштук; 3 – сопло; 4 – струя защитного газ; 5 – сварочная дуга; 6 – сварочная ванна; 7 – шов

Сварка производится голой сварочной проволокой диаметром 1,4…2 мм, которая подается через токоведущий мундштук. В зону сварки через сопло поступает углекислый газ, струя которого, обтекая сварочную дугу и сварочную ванну, предохраняет расплавленный металл от воздействия атмосферного воздуха.

Электродная проволока подается непрерывно в зону сварки со скоростью плавления. Сварочная горелка перемещается вдоль свариваемых кромок, в результате чего совершается процесс сварки с образованием шва. Сварку производят на постоянном токе обратной полярности (плюс на электроде).

Различают механизированную и автоматическую сварки. В первом случае механизирована подача проволоки, а горелка перемещается сварщиком вручную. В случае автоматической сварки механизированы подача проволоки и перемещение сварочной горелки.

Углекислый газ является химически активным газом, поэтому для сварки применяют проволоку марок Св-08Г2С или Св-08ГС, содержащих в своем составе раскислители кремний и марганец.

Основные достоинства сварки в среде СО2:

– обеспечивает получение высококачественных сварных соединений из различных металлов при высокой производительности по сравнению с ручной дуговой сваркой благодаря применению высокой плотности тока (100…200 А/мм 2 );

– высокое качество сварного шва;

– в отличие от сварки под слоем флюса возможно визуальное наблюдение за процессом горения дуги и образования шва, что особенно важно при механизированной сварке;

– в отличие от сварки под слоем флюса не требует приспособлений для удержания флюса, поэтому возможна сварка как нижних, так и вертикальных и горизонтальных швов.

К недостаткам следует отнести возможность сдувания струи газа ветром или сквозняком, что ухудшает защитное действие газа и качество шва; необходимость защищать рабочих от излучения дуги и от опасности отравления при сварке в замкнутом пространстве. Кроме того, сварка в углекислом газе возможна только при постоянном токе и дает менее гладкую поверхность шва, чем сварка под флюсом.

Оборудование поста для сварки в среде углекислого газа. Для механизированной сварки в среде углекислого газа применяются полуавтоматы отечественного производства марок ПДГ-516, ПДГ-508, ПДГ-415, ПДГ-252 и др., а также полуавтоматы зарубежных фирм. Сварочные полуавтоматы имеют в своем составе примерно одинаковые функциональные блоки и отличаются друг от друга лишь мощностью и конструктивным исполнением. В качестве примера представлен пост механизированной сварки в углекислом газе полуавтоматом ПДГ-516, блок-схема которого представлена на рис. 10.10.

Сварочная проволока подается в зону сварки подающим механизмом, состоящим из двигателя постоянного тока, редуктора и двух пар роликов-шестерен с гладкими коническими канавками. Рычажным механизмом верхние ролики прижимаются к нижним. Сварочная проволока из кассеты подается роликами-шестернями через шланг в сварочную горелку. Сюда же подаются сварочный ток через кабель от выпрямителя и углекислый газ из баллона с углекислотой. Для сварки в углекислом газе используются выпрямители с жесткой внешней характеристикой марок ВС-300, ВДГ-301 и др. (в процессе сварки напряжение на дуге постоянно и не зависит от величины сварочного тока) или универсальные выпрямители ВДУ-504, ВДУ-506.

Рис. 10.10. Блок-схема полуавтомата для сварки в среде СО2:

1 – сварочная горелка; 2 – механизм подачи электродной проволоки;

3 – кассета с электродной проволокой; 4 – сварочные кабели; 5 – баллон

с углекислотой; 6 – подогреватель газа; 7 – редуктор-расходомер; 8 – кабель

управления; 9 – сварочный выпрямитель; 10 – осушитель газа

В баллоне сварочная углекислота находится в жидком состоянии. После испарения углекислый газ проходит через подогреватель, редуктор-расходомер, электрогазовый клапан и поступает в сварочную горелку. В случае применения несварочной (пищевой) углекислоты, с повышенным содержанием влаги, в газовую магистраль дополнительно включают осушитель. Испарение углекислоты проходит с поглощением тепла. Подогреватель повышает температуру углекислого газа, предотвращая замерзание редуктора. Редуктор-расходомер обеспечивает снижение давления газа до рабочего значения и контроль его расхода в процессе сварки.

Электрогазовый клапан представляет собой исполнительный механизм, открывающий и закрывающий подачу газа в сварочную горелку.

Блок управления сварочным полуавтоматом (БУСП) с электрогазовым клапаном расположен сзади подающего механизма и обеспечивает выполнение следующих операций:

– включение и выключение электрогазового клапана (выключение выполняется с регулируемой задержкой 1…5 с, что обеспечивает защиту жидкого металла вплоть до его затвердевания);

– включение и выключение электродвигателя подачи проволоки (скорость подачи проволоки регулируется резистором на панели блока управления);

– включение и выключение сварочного выпрямителя (выключение выполняется с регулируемой задержкой 0,5…3 с, что обеспечивает заварку кратера).

При нажатии выключателя на сварочной горелке происходит включение газового клапана и подача газа в зону сварки. Через 1 с включаются источник питания сварочной дуги и привод подачи электродной проволоки. При замыкании сварочной проволоки на изделие зажигается дуга.

При размыкании выключателя останавливается двигатель подачи электродной проволоки, происходит растяжка дуги и ее обрыв. Через 0,5…3 с выключается источник питания и через 1…5 с – газовый клапан (снимается напряжение со сварочной горелки и прекращается подача газа). Следующее включение происходит при нажатии кнопки на сварочной горелке.

Технические характеристики полуавтомата для сварки в углекислом газе ПДГ-516 с ВДУ-506 представлены в табл. 10.4.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8441 — | 8048 — или читать все.

85.95.178.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Обозначение способов сварки в стандартах

Сообщение об ошибке

Обозначение способов сварки в стандартах (на основные типы, конструктивные элементы и размеры, выполненные различными способами)

1. Ручная дуговая сварка соединений из сталей, а также сплавов на железоникелевой основе выполняется по ГОСТ 5264. Стандарт не устанавливает обозначения на этот способ сварки. Толщина свариваемого металла от 1 до 175 мм.

2. Дуговая сварка в защитных газах сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах выполняется по ГОСТ 14771.
В стандарте приняты следующие обозначения способов сварки:
ИН – в инертных газах неплавящимся электродом без присадочного материала (толщина металла от 0.5 до 6.0 мм),
ИНп- в инертных газах неплавящимся электродом с присадочным материалом (толщина металла от 0.8 до 20 мм),
ИП — в инертных газах и их смесях в углекислом газе и кислородом плавящимся электродом (толщина металла от 0.5 до 120 мм),
УП — в углекислом газе плавящимся электродом (толщина металла от 0.5 до 120 мм).

3. Дуговая сварка точечных сварных соединений из сталей, медных, алюминиевых и никелевых сплавов выполняется по ГОСТ 14776 (нахлесточные соединения).
В стандарте приняты следующие обозначения способов сварки:
Ф – под флюсом (толщина верхнего листа – 0.8. 5.0 мм, толщина листа с круглым отверстием – 3.5. 14 мм),
УП – в углекислом газе плавящимся электродом (толщина верхнего листа – 0.8. 6.6 мм, толщина листа с круглым отверстием – 4.5. 30 мм),
УН – в углекислом газе неплавящимся электродом (толщина верхнего листа – 0.4. 3.3 мм, толщина листа с круглым отверстием – 4.5. 30 мм),
ИП – в инертных газах плавящимся электродом (толщина верхнего листа – 0.8. 6.6 мм, толщина листа с круглым отверстием – 4.5. 15 мм),
ИН – в инертных газах неплавящимся электродом (толщина верхнего листа – 0.4. 3.3 мм),
ПП – плавящимся покрытым электродом с принудительным несквозным проплавлением и формированием (толщина верхнего листа – 0.8. 12 мм без подготовки кромок).

4. Дуговая сварка под флюсом сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах выполняется по ГОСТ 8713.
В стандарте приняты следующие обозначения способов сварки:
АФ – автоматическая на флюсовой подушке (толщина металла — 2.0. 60 мм),
АФм — автоматическая на флюсомедной подкладке (толщина — 3.0. 30 мм),
АФо — автоматическая на остающейся подкладке (толщина — 2.0. 60.0 мм),
АФп — автоматическая на медном ползуне (толщина — 5.0. 20 мм),
МФ — механизированная на весу (толщина — 1.5. 30 мм).

5. Электрошлаковая сварка сварных соединений из сталей выполняется по ГОСТ 15164.
В стандарте приняты следующие обозначения способов сварки:
ШЭ – проволочным электродом (толщина металла — 30. 450 мм),
ШМ – плавящимся мундштуком (толщина более 30 мм),
ШП — электродом, сечение которого соответствует по форме поперечному сечению сварочного пространства (зазора), толщина – 30. 800 мм.

6. Сварные соединения трубопроводов из сталей выполняются по ГОСТ 16037.
В стандарте приняты следующие обозначения способов сварки:
ЗП – дуговая сварка в защитном газе плавящимся электродом, ЗН – дуговая сварка в защитном газе неплавящимся электродом, Р – ручная дуговая сварка, Ф -дуговая сварка под флюсом, Г – газовая сварка.

источник

Механизированная сварка в углекислом газе обозначение

Дуговая сварка в защитном газе

Основные типы, конструктивные элементы и размеры

Gas-shielded arc welding. Welded joints.
Main types, design elements and dimensions

Постановлением Государственного комитета стандартов Совета Министров СССР от 28.07.76 N 1826 дата введения установлена 01.07.77

Ограничение срока действия снято Постановлением Госстандарта от 18.06.92 N 553

ВЗАМЕН ГОСТ 14771-69

ИЗДАНИЕ (декабрь 2006 г.) с Изменениями N 1, 2, 3, утвержденными в марте 1982 г., декабре 1986 г., январе 1989 г. (ИУС 6-82, 3-87, 4-89)

1. Настоящий стандарт устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых дуговой сваркой в защитном газе.

Стандарт не устанавливает основные типы, конструктивные элементы и размеры сварных соединений стальных трубопроводов по ГОСТ 16037-80.

2. В стандарте приняты следующие обозначения способов сварки:

ИН — в инертных газах, неплавящимся электродом без присадочного металла;

ИНп — в инертных газах неплавящимся электродом с присадочным металлом;

ИП — в инертных газах и их смесях с углекислым газом и кислородом плавящимся электродом;

УП — в углекислом газе и его смеси с кислородом плавящимся электродом.

3. Основные типы сварных соединений должны соответствовать указанным в табл.1.

Форма подготовленных кромок

Характер выполненного шва

Форма поперечного сечения

Толщина
свариваемых деталей, мм, для способов сварки

Условное обозна- чение сварного соеди- нения

источник

Разбираемся в чертежах сварочных швов по ГОСТу

Если вы скажете, что ГОСТ – ваше любимое слово, вам вряд ли кто-нибудь поверит. Но если вы занимаетесь сваркой и претендуете на статус профессионала высокого класса, вам придется это слово если не полюбить, то относиться со всем уважением.

Его нужно не просто уважать, а хорошо разбираться в положенных государственных стандартах, касающихся типологии сварочных способов. Почему? Потому что, если вы работаете с чем-то серьезнее, чем старый тазик на даче, вы обязательно столкнетесь с рабочими чертежами, где будут в огромных количествах значки, буквы и аббревиатуры.

Все верно, без технических спецификаций и стандартных обозначений – никуда. Современные сварочные технологии – это широкий набор самых разных методов со своими требованиями и техническими нюансами. Все они укладываются в несколько стандартов, по которым мы сейчас пройдемся и рассмотрим самым внимательным образом.

Обозначения сварки на чертежах по ГОСТу на первый взгляд выглядят устрашающе. Но если разобраться и запастись оригинальными версиями трех главных ГОСТов по видам и обозначениям сварочных технологий, обозначения станут понятными и информативными, а ваша работа точной и профессиональной.

Виды сварочных швов

Сначала ЕСКД – это Единая Система Конструкторской Документации, если проще – комплекс всевозможных стандартов, согласно которым должны выполняться все современные технические чертежи, в том числе документация по сварочным работам.

В составе этой системы есть несколько стандартов, которые нас интересуют:

  1. ГОСТ 2.312-72 под названием «Условные изображения и обозначения швов сварных соединений».
  2. ГОСТ 5264-80 «Ручная дуговая сварка. Соединения сварные», в котором исчерпывающе описаны все возможные виды и обозначения сварных швов.
  3. ГОСТ 14771-76 “Швы сварных соединений, сварка в защитных газах”.

Чтобы разобраться с условными обозначениями сварочных способов в инженерных чертежах, нужно разобраться и с их видами. Предлагаем взглянуть на пример обозначения сварного шва на чертеже:

Выглядит громоздко и устрашающе. Но мы не будем нервничать и не спеша во всем разберемся. В это длинной аббревиатуре есть четкая логика, начнем двигаться по этапам. Разобьем этого монстра на девять составных частей:

Теперь эти же составные элементы по квадратам:

  • Квадрат 1 – вспомогательные знаки для обозначения: замкнутая линия или монтажное соединение.
  • Квадрат 2 – стандарт, по которому приведены условные обозначения.
  • Квадрат 3 – обозначение буквой и цифрой типа соединения с его конструктивными элементами.
  • Квадрат 4 – способ сварки согласно стандарту.
  • Квадрат 5 – тип и размеры конструктивных элементов по стандарту.
  • Квадрат 6 – характеристика в виде длины непрерывного участка.
  • Квадрат 7 – характеристика соединения, вспомогательный знак.
  • Квадрат 8 – вспомогательный знак для описания соединения или его элементов.

А теперь разберём в деталях каждый элемент нашей длинной аббревиатуры.

В квадрате №1 находится кружок – одна из дополнительных характеристик, символ кругового соединения. Альтернативным символом является флажок, обозначающий монтажный вариант вместо кругового.

Специальная односторонняя стрелка показывает шовную линию. С этой стрелкой связана еще одна специфическая особенность сварочных чертежей. У этой стрелки с односторонним оперением есть симпатичная особенность под названием «полка». Полка играет роль настоящей полки – все условные обозначения могут располагаться на полке, если указано видимое соединение.

Или под полкой, если это шов невидимый и расположен с обратной стороны, т.е. с изнанки. Что считать лицевой стороной, а что изнанкой? Лицевая сторона одностороннего соединения – всегда та, с которой производится работа, это просто. А вот в двустороннем варианте с несимметричными кромками лицевой стороной будет та, где идет сварка основного соединения. А если кромки симметричные лицевой и изнанкой могут любые стороны.

А вот самые популярные вспомогательные знаки, используемые в чертежах со сваркой:

Разбираем квадраты №2 и 3, виды швов по ГОСТам

Вариантами соединений вплотную занимаются два стандарта: уже знакомый нам ГОСТ 14771-76 и знаменитый ГОСТ 5264-80 о ручной дуговой сварке.

Виды сварочных соединений следующие:

С – стыковой шов. Свариваемые металлические поверхности соединяются смежными торцами, находятся на одной поверхности или в одной плоскости. Это один из самых распространенных вариантов, так как механические параметры стыковых конструкций очень высокие. Вместе с тем этот способ достаточно сложный с технической точки зрения, он по силам опытным мастерам.

Т – тавровый шов. Поверхность одной металлической заготовки соединяется с торцом другой заготовки. Это самая жесткая конструкция из всех возможных, но за счет этого тавровый способ не любит и не предназначен для нагрузок с изгибаниями.

Н – нахлесточный шов. Свариваемые поверхности параллельно смещены и немного перекрывают друг друга. Способ довольно прочный. Но нагрузки переносит меньше, чем стыковые варианты.

У – угловой шов. Плавление идет по торцам заготовок, поверхности деталей держат под углом друг к другу.

О – особые типы. Если способа нет в ГОСТе, в чертеже обозначается особый тип сварки.

Оба стандарта в рамках ЕКСД хорошо перекликаются друг с другом и справедливо делят ответственность по видам:

Соединения ручного дугового способа по ГОСТу 5264-80:

  • С1 – С40 стыковые
  • Т1 – Т9 тавровые
  • Н1 – Н2 нахлесточные
  • У1 – У10 угловые

Соединения сварки в защитных газах по ГОСТу 14771-76:

  • С1 – С27 стыковые
  • Т1 – Т10 тавровые
  • Н1 – Н4 нахлесточные
  • У1 – У10 угловые

В нашей аббревиатуре во втором квадрате указан ГОСТ 14771-76, а в третьем Т3 – тавровый способ без скоса кромок двусторонний, который как раз указан в этом стандарте.

Квадрат №4, способы сварки

Также в стандартах присутствуют обозначения способов сварки, вот примеры самых распространенных из них:

  • A – автоматическая под флюсом без подушек и подкладок;
  • Aф – автоматическая под флюсом на подушке;
  • ИH – в инертном газе вольфрамовым электродом без присадки;
  • ИHп – способ в инертном газе с вольфрамовым электродом, но уже с присадкой;
  • ИП – способ в инертном газе с плавящимся электродом;
  • УП – то же самое, но в углекислом газе.

У нас в квадрате №4 указано обозначение сварки УП – это способ в углекислом газе с плавящимся электродом.

Квадрат №5, размеры шва

Это обязательные размеры шва. Удобнее всего обозначить длину катета, так как речь идет о тавровом варианте с перпендикулярным объединением под прямым углом. Катет определяют в зависимости от предела текучести.

Надо заметить, что, если на чертеже указано соединение стандартных размеров, длина катета не указывается. В нашем чертежном обозначении катет равен 6-ти мм.

Дополнительно соединения бывают:

  • SS односторонними, для которых дуга или электрод передвигаются с одной стороны.
  • BS двусторонними, источник плавления передвигается с обеих сторон.

В дело вступает третий участник нашей чертежно-сварочной тусовки – ГОСТ 2.312-72, как раз посвященный изображениям и обозначениям.

Согласно этому стандарту швы подразделяются на:

  • Видимые, которые изображаются сплошной линией.
  • Невидимые, обозначаемые на чертежах пунктирной линией.

Теперь вернемся к нашему первоначальному шву. Нам по силам перевести это условное обозначение сварки в простой и понятный для человеческого уха текст:

Двусторонний тавровый шов методом ручной дуговой сварки в защитном углекислом газе с кромками без скосов, прерывистый с шахматным расположением, катет шва 6 мм, длина провариваемого участка 50 мм, шаг 100 мм, выпуклости шва снять после сварки.

источник

Adblock
detector