Меню Рубрики

Механизированные методы сварки труб

Механизированная сварка: виды, ГОСТы, технология, оборудование, дефекты, область применения

Механизированная сварка представляет собой дуговую сварку, в процессе которой подача электрода, преобразованного путем плавления в присадочный металл или перемещение дуги выполняются с помощью управляемых машин и механизмов. С ее помощью специалист по металлу производит стыковые, угловые, тавровые и иные швы.

Нормативные акты, используемые при проведении сварных работ

Перечень основных Государственных стандартов, посвященных механизированной сварке, включает:

  • ГОСТ 2601-84 Сварка металлов. Термины и определения основных понятий;
  • ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры;
  • ГОСТ 19521-74 Сварка металлов. Классификация;
  • ГОСТ 3.1705-81 Единая система технологической документации. Правила записи операций и переходов. Сварка;
  • ГОСТ 11969-79 Сварка плавлением. Основные положения и их обозначения;
  • ГОСТ 29273-92 Свариваемость. Определение;
  • ГОСТ 30430-96 Сварка дуговая конструкционных чугунов. Требования к технологическому процессу;
  • ГОСТ 2.312-72 Единая система конструкторской документации. Условные изображения и обозначения швов сварных соединений;
  • ГОСТ Р ИСО 17659-2009 Сварка. Термины многоязычные для сварных соединений;
  • ГОСТ Р ИСО 857-1-2009 Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения;
  • ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры.

Область использования

Данный вид технологических работ широко используется при производстве:

Механизированная сварка – это вид сварочных работ, где все ключевые манипуляции, кроме погрузки и разгрузки изделий, выполняются в автоматическом режиме.

Частично механизированная – представляет собой металлообработку, где в ручном режиме осуществляется передвижение горелки и заготовки, погрузка и разгрузка изделий, а проволока поступает механически.

Технология механизированной обработки

Сначала обрабатываемые поверхности подготавливают. Проводят правку для устранения деформаций проката, наносят разметку, выполняют резку металла и обработку кромок. Края подвергают механической обработке абразивными материалами (инструментами) высокой твердости.

Далее выбирают режим сварки. Определяют силу, род и полярность тока, напряжение дуги, скорость сварки, температуру окружающей среды, число проходов, пространственное положение шва.

К электроду подводят электроэнергию, а обрабатываемое изделие заземляют для возбуждения и поддержания дуги. При соприкосновении этих объектов возникает сварочный ток. Под воздействием нагрева металл электрода и кромка изделия плавятся. Расплавленные частицы одного и другого вещества попадают в сварочную ванну, где происходит их смешивание в единую массу. При этом образуется расплавленный шлак, который поднимается на поверхность и образует защитную пленку. Затвердевание металла способствует образованию сварного шва.

На качество места соединения влияет наличие воздуха. Чтобы шов оставался прочным, локацию обрабатывают защитным газом, образующимся при сгорании углерода, или флюсом.

Технология частично механизированной сварки

Частично механизированная сварка предполагает ручное перемещение горелки и (или) заготовки и осуществление погрузки и разгрузки деталей. А вот подача присадочного металла происходит механическим способом. Возможна ручная регулировка сварочных параметров.

Существуют левый и правый способ газовой сварки. Левый способ заключается в перемещении горелки справа налево, при этом также передвигается перед пламенем присадочный пруток. В идеале движение должно носить зигзагообразный характер, перпендикулярный шву.

Правая сварка подразумевает прямолинейное перемещение горелки слева направо. Пламя расположено перед прутком и направлено в сторону расплавленной ванны. Металлический шов остывает не так быстро, как в первом случае. Из-за этого прочность соединения и производительность работ повышаются, а расход газа уменьшается.

Сварочное оборудование

Производство сварных швов реализуется с помощью автоматических и полуавтоматических аппаратов.

Автоматический прибор включает в себя:

  • газовый редуктор;
  • баллон с кислотами;
  • подогреватель;
  • осушитель.

Главным элементом автомата является сварочная головка. От того, с какой скоростью (постоянной или переменной) она подает электродную проволоку, зависит скорость плавления.

Полуавтомат обеспечивает подачу проволоки механическим способом. Перемещение дуги по направлению шва реализуется ручным управлением.

Полуавтоматическая техника включает в себя:

  • электродержатель;
  • кассеты;
  • шкаф управления;
  • сварочную горелку;
  • источник питания;
  • провод.

Примерная стоимость аппаратов для полуавтоматической сварки на Яндекс.маркет

Основным элементом механизма является электродержатель. Он сохраняет электрод в определенном положении и обеспечивает подачу тока в зону сварки. Активация дуги происходит посредством замыкания или пусковой кнопки, расположенной на рукояти держателя.

Механизированная сварка под флюсом

Флюс – это порошкообразное вещество для сварки, соответствующее ГОСТ 8713-79. Своими свойствами он напоминает электродное покрытие, а основным веществом является силикатный марганец.

Флюс бывает плавленым и неплавленым. К первым относятся вещества, прошедшие высокотемпературную обработку в печах. Ко вторым причислены флюсы керамического происхождения и порошки, спекшиеся и раздробленные до определенного размера.

Чаще всего сварка под флюсом используется при соединении высоколегированной и нержавеющей стали, алюминиевых и медных сплавов.

Примерная стоимость флюса на Яндекс.маркет

Недостатки швов

Дефекты сварочных швов возникают вследствие:

  • дифференциального нагрева металлического изделия;
  • усадки расплавленного вещества;
  • структурных изменений в химическом элементе.

Для предотвращения несовершенства сварки детали закрепляют в специальных инструментах. Этот вариант идеально годится для вязких составов, которые не вызывают образование трещин.

Некоторые сварщики используют метод обратной деформации или метод полного (частичного) устранения внутренних напряжений.

Классический случай устранения недостатков – термическая обработка посредством высокого отпуска. Изделие нагревают до 650°С и после недолгой выдержки медленно охлаждают.

Механизированное производство швов: плюсы и минусы

К преимуществам относят отличное качество готовых изделий, высокую скорость металлообработки, экономию металла (например, в сравнении с заклепочным соединением), снижение стоимости, связанную с уменьшением трудоемкости подготовительных работ. Вес сварной конструкции легче литой или клепаной.

К отрицательным качествам относится высокое энергопотребление сварочных работ и расходных материалов.

источник

Механизированная сварка

Механизированная или частично механизированная сварка является дуговой сваркой, в процессе которой плавящийся электрод и дуга перемещается при использовании каких-либо механизмов или специального оборудования, специально для этого предназначенного. При помощи данного вида сварки можно выполнять любые сварочные работы, к примеру с нахлестом, тавровые, угловые или стыковые.

Автоматическая дуговая сварка является дуговой сваркой, при которой дуга возбуждается. А электрод подается при помощи только механизированного оборудования, а человек при этом вообще не принимает участие в процессе. Все происходит по четко заданной программе, которая продумывается заблаговременно.

Механизированная и автоматическая дуговая сварка подразумевает образование соединения особым образом. Происходит расплавление электрода и сварочного металла, капли данных материалов отправляются в сварочную ванну, а затем тщательно перемешиваются между собой. Жидкий металл обрабатывается при использовании дополнительного флюса или газа, что кардинально отличает автоматизированную сварку от ручной. Металл начинает раскисляться и легироваться. Дуга перемещается около свариваемых кромок, а также приходит в движение сварочная ванна.

Существует несколько видов сварки механизированного типа

  1. Углекислый газ и его смеси с кислородом сваривает стальные изделия со средним содержанием углерода и низколегированные. Углекислый газ способен варить сталь при толщине 40 мм, а смеси газов могут справиться с толщиной 80 мм. В процессе сварки газы повышают ее свойства и характеристики. Углекислый газ расходуется в зависимости от того, насколько мощная дуга участвует в процессе, типа электрода, какие потоки воздуха в помещении в процессе сваривания металлов.
  2. Инертные газы, к примеру аргон или гелий, способен сваривать алюминиевые детали, магниевые, титановые или различные сплавы из этих материалов. Сварить можно любые легированные стали и со средним и низким содержанием углерода. Использовать данные газы рекомендуется, ведь гелий имеет плотность намного меньше, чем воздух, а аргон наоборот. Также данные газы не образуют химические соединения с металлическими конструкциями, поэтому в них можно сварить любые сплавы или металлы.
  3. При помощи флюса можно сваривать легированные стали, со средним или низким содержанием углерода. Также прекрасно для этого подходят титан, алюминий, чугун, медь или сплавы из данных материалов.

Флюс является порошкообразным материалом, который в процессе сварки обеспечивает функции электродов при ручной сварке. Его основа состоит из силиката марганца. Также флюсы можно разделить на две разновидности:

Неплавленными называют флюсы спеченные или керамические. Плавленные получаются при плавлении в печи определенных компонентов и составов. Керамические флюсы включают в себя порошковые материалы, которые соединяются в небольшие зерна специальными веществами, к примеру это может быть жидкое стекло. Спеченные флюсы спекают в печах, причем для этого используются те же порошкообразные вещества и высокие температуры, а потом частицы раздрабливаются до необходимого размера.

При сварке некоторые частицы флюса расплавляются, а когда затвердевают, становятся похожи на шлаковые корки. Не расплавленный флюс можно использовать в дальнейшем после того, как он просеивается.

При помощи порошковых проволок можно сварить низколегированные и низкоуглеродные стали, а при порошковых проволоках и высоколегированные, а также нержавейку и медные детали и сплавы. Они могут достигать толщины около 40 мм. Порошковые проволоки имеют оболочку из металла, которая заполняется шихтой.

Самой простой конструкцией из всех является порошковая проволока с трубчатым поперечным сечением. Чтобы сделать ее более жесткой, а также изменить соотношение металлических компонентов, необходимо применять проволоку, в которой во внутренней полости кромки металлов немного отогнуты в стороны.

Важно! Металл внутри оболочки рекомендуется выбирать в прямой зависимости от того, какой металл необходимо будет сваривать.

В шихту данного вида проволоки необходимо ввести компоненты, которые способны справляться с некоторыми функциями:

  • защита расплавляемого металла от кислородного воздействия и азота, окисления и легирования металлов;
  • дуга начинает гореть стабильно и равномерно;
  • шов формируется намного лучше и качественнее.

Применяется три разновидности порошковых проволок при механизированной сварке. Они могут быть:

  • самозащитные, для сваривания в углекислом газе;
  • для сваривания при помощи флюса;
  • самозащитные порошковые проволоки, которые не требуют дополнительного флюса и использования углекислого газа.

Технология для механизированной сварки

Для автоматической и механизированной сварки используются автоматические и полуавтоматические приспособления и аппараты. Они комплектуются источниками тока, для того, чтобы питать дугу.

Данные автоматы рассчитаны на выполнение таких функций, как:

  • возбуждение и приведение дуги в движение;
  • регулировка сварочного процесса;
  • электродная проволока подается с такой же скоростью плавления, которая необходима при сварке;
  • дуга передвигается равномерно около свариваемых кромок.

Полуавтоматическое оборудование имеет два основных устройства. Самоходная головка или трактор, а также аппаратуру для управления.

Сварочные автоматы для сваривания в газовых образованиях включают в себя специальные газовые редукторы, баллоны с кислотами, подогреватели и осушители, которые необходимы для очищения газов от лишней влажности.

При помощи трактора подается электродная проволока, а ток проводится к сварочному месту. Механизированный способ сваривания при помощи электродных проволок обычно включает в себя два ролика, один ведущий, а другой вспомогательный. Именно они надежно удерживают проволоку и сжимают ее с нужной силой. Они наматывается на специальные кассеты, поэтому происходит проталкивание через шланги, а затем при помощи тога подается в зону расположения дуги.

У сварочного автоматического оборудования под флюсом есть специальные системы, которые убирают излишки флюса. Трактор для сварки при помощи защитных газов есть горелка, которая направляет в необходимую зону электродную проволоку, подводит к ней ток и подает газовые образования в нужное место. На месте горелки обычно располагается держатель, который подает флюс через специальный бункер.

Механизированная и автоматическая сварка и ее применение

Механизированная сварка помогает накладывать прямые и кривые швы, а также позволяет производить сваривание в труднодоступных местах. Металлы должны быть средней и небольшой толщины, чтобы обеспечивать надежное и качественное сваривание. Данные виды сварки применяются при ремонтных и производственных работах. Кольцевые и прямолинейные швы при использовании на производстве, которые имеют длину больше 300 мм, обычно выполняются только при использовании автоматического сварочного оборудования.

При транспортном и машиностроительном производстве механизированная сварка плавящимся электродом применяется при производстве локомотивов или вагонов. Балки необходимо сваривать под флюсом на потоке. Рамы обычно сваривают при помощи углекислого газа. В сельском хозяйстве и производствах оборудования практически около 80 % работ выполняется при помощи углекислого газа.

При автоматической сварке при применении флюса и углекислого газа в основной массе свариваются трубы и другие детали, которые имеют большой диаметр.

Механизированная сварка с применением дополнительного флюса, углекислого газа и порошковых проволок постоянно используется в строительстве печей, для специальных резервуаров для хранения опасных и легко возгораемых веществ, для строительства мостов и судов, а также в других видах производств.

источник

Технология сварки трубопроводов

Развитие современной экономики характеризуется постоянным ростом энерго-потребления: если минимальный объем потребления энергии за всю историю человечества составляет примерно 160 млрд. т условного топлива, то из них не менее 110 млрд. т приходится на последние 35 лет.

За последние четверть века доля нефти и газа в топливном балансе увеличилась более чем в три раза.

  • Транспортировка нефти и газа производится непосредственно от 1 мест их добычи по стальным магистральным трубопроводам.
    В последнее время трубопроводный транспорт стали применять и для транспортировки на большие расстояния этилена и аммиака.
  • Ведутся интенсивные исследовательские работы с целью доставки по трубопроводам сыпучих и других материалов.
  • В перспективе намечено применять не только стальные, но и пластмассовые трубопроводы.
  • Основной технологический процесс при строительстве трубопроводов — сварка. Общая длина кольцевых швов при сварке трубопроводов только в 1976 г. превысила длину экватора земного шара.

Впервые сварку трубопроводов в нашей стране применили при строительстве нефтепровода Грозный—Туапсе (1927—1929 гг.). На этом трубопроводе для соединения стыков применяли газовую и электрическую дуговую сварку, а также муфтовые резьбовые соединения.

В 1929 г. газовой сваркой был полностью сварен нефтепровод Баку— Батуми. Электродуговую сварку начали широко применять лишь в 1933— 1935 гг. при сооружении нефтепровода Гурьев —Орск. Механизированные способы сварки кольцевых швов магистральных трубопроводов начали применять в 1945—1953 гг. при строительстве трубопроводов Саратов—Москва, Дашава—Киев—Брянск—Москва и Ставрополь—Москва.

В результате исследований, проведенных ИЭС им. Е. О. Патона, удалось впервые в мировой практике использовать при сооружении магистрального трубопровода механизированную сварку под флюсом. На строительстве газопроводов в этот период применяли установки для газопрессовой сварки, приобретенные в США.

В 1952 г. на строительстве трубопровода диаметром 377 мм впервые в мировой практике была применена стыковая сварка непрерывным оплавлением передвижными агрегатами с контурными сварочными трансформаторами, разработанными ИЭС им. Е. О. Патона с участием ВНИИСТ и КФ СКВ «Газстрой-машина».

Инициатором применения при строительстве трубопроводов сварки под флюсом и стыковой сварки передвижными агрегатами был Е. О. Патон.

В освоении способов механизированной сварки большая заслуга принадлежит главному инженеру Сварочно-монтажного треста, а затем основателю и руководителю лаборатории сварки Всесоюзного научно- исследовательского института по строительству магистральных трубопроводов (ВНИИСТ) А. С. Фалькевичу.
Работы, выполненные ВНИИСТ, СКВ Газстроймашина, ИЭС им Е. О. Патона и сварочно монтажными организациями, позволили в 1959 г. применить сварку в углекислом газе и скоростными газозащитными целлюлозными электродами типа ВСЦ. В табл. 19.1 приведены данные о различных видах сварки при строительстве магистральных трубопроводов в разные периоды (в %).


До 1971 г. в СССР сооружена сеть магистральных нефтегазопроводов общей длиной около 100 тыс. км. Диаметры построенных трубопроводов не превышали 1020 мм. В связи с отдаленностью основных месторождений от промышленных центров протяженность отдельных магистральных трубопроводов достигала 3—4 тыс. км. (уникальные, например, нефтепроводы «Дружба» и Усть-Балык— Омск, газопроводы Средняя Азия— Центр и Игрим—Серов). Непрерывно возрастают диаметры трубопроводов. Если до 1952 г. применялись трубы с максимальным диаметром 530 мм, то впоследствии крупные трубопроводы сваривали в основном из труб диаметром 720, 820 и 1020 мм .
В последние 7—8 лет, в связи с открытием крупных месторождений газа в Западной Сибири и на севере европейской части СССР, строительство трубопроводов в значительной степени переместилось в северные районы страны. В настоящее время в СССР трубопроводы строят в различных климатических и почвенно-геологических условиях. В пустынных районах Средней Азии температура летом достигает +60° С, а в районах Якутии или Норильска сварочные работы выполняют зимой

1926—1935 1936— 1945 1946— 1950 1951—1955 1956—1958 1959 I960
Ручная газовая сварка 90 20
Ручная электродуговая сварка 10 80 75 50 35 35 35
Газопрессовая сварка 23 10 ш I
Механизированная сварка под флюсом -* 2 35 55 58 52
Стыковая сварка непрерыв­ным оплавлением 5 10 5 5
Сварка в углекислом газе ш % 2 8*

при температурах до —50° С, что с учетом различных составов сталей труб требует применения в каждом конкретном случае специальных сварочных материалов, особой технологии и организации сварочных работ.
Одновременно с развитием строительства трубопроводов в СССР создавались крупные заводы и специализированные цехи по производству сварных труб большого диаметра для газо- и нефте-проводов. Максимальный диаметр труб высокого давления, изготовляемых на отечественных заводах, составляет 1420 мм. Технология сварки труб на заводах разработана Институтом электросварки им. Е. О. Патона.
После 1971 г. в строительстве магистральных трубопроводов в СССР произошли значительные изменения, существо которых кратко заключается в следующем.
Диаметры наиболее мощных трубопроводов, сооружаемых на Крайнем Севере, Юге, в горных условиях возросли до 1220—1420 мм при одновременном повышении давления газа в них с 55 до 75 атм. В настоящее время для магистральных трубопроводов применяют в
основном трубы диаметром 530, 720, 1020, 1220 и 1420 мм с толщинами стенок от 7,5 до 26,0 мм.
Усложнились составы сталей труб. Эквивалент углерода

в ряде случаев возрос до 0,5.
В связи с повышением нижнего (расчетного) временного сопротивления труб до 539—588 МПа и предела текучести 412—441 МПа и необходимостью гарантировать ударную вязкость при отрицательных температурах стали применять трубы, микролегированные ванадием, ниобием, титаном, азотом. Характеристики наиболее распространенных трубных сталей, применяемых в СССР для сооружения магистральных трубопроводов, приведены в табл. 19.2.
Качество выпускаемых труб должно отвечать непрерывно возрастающим требованиям. Необходимо было улучшить прочностные и вязкие свойства металла труб за счет легирования и специальной термической обработки, повысить точность концов труб, освоить выпуск новых труб большого диаметра, в том числе с многослойной стенкой на повышенное давление для сверхмощных магистральных трубопроводов, потребовалось сооружать трубопроводы для транспорта сероводородного газа. Эти трубопроводы должны быть стойкими против коррозии под напряжением. Коррозионной активностью может обладать аммиак и некоторые сорта нефти.

Указанные изменения серьезно отразились на технико-экономических показателях технологии сварочно-монтажных работ при строительстве трубопроводов.

Значительно увеличились объемы и трудоемкость сварки; необходимо было быстро переоснастить сварочно-монтажные организации новым мощным оборудованием для сварки, термообработки и контроля. Существенно усложнилась технология сварки и контроля с введением таких новых операций, как подогрев стыков, термообработка стыков, внутренняя подварка швов, панорамное просвечивание самоходными установками для контроля швов, ультразвуковой контроль швов и т. п.
В связи с изложенным в 1974 г. были приняты специальные меры по повышению технического уровня строительства магистральных нефтепроводов и газопроводов, обеспечению большей надежности их эксплуатации. Было предусмотрено улучшение свойств труб, создание новой и усовершенствование существующей технологии сварки трубопроводов различными способами, создание новых сварочных материалов и новых средств контроля швов.
В настоящее время при строительстве трубопроводов применяют различные способы сварки, при этом с учетом сварки труб на трубных заводах на автоматическую сварку под флюсом приходится около 90% общего объема сварки. Ручную сварку применяют практически только в полевых условиях для соединения труб между собой.
Марка стали 118

Характеристики трубных сталей

Для ускорения строительства и повышения надежности трубопроводов максимально сокращают объем сварки в полевых условиях за счет увеличения длины труб, поставляемых с трубосварочных заводов. Если 10—12 лет назад трубы имели длину б м, то в настоящее время трубы больших диаметров поставляют длиной в основном 12 м. Ведутся работы по изготовлению труб еще большей длины. Так, например, один из участков газопровода Средняя Азия— Центр построен в опытном порядке из труб диаметром 1020 мм, длиной 24 м, изготовленных Новомосковским трубным заводом. Расчеты показывают, что увеличение длины труб позволит существенно уменьшить число квалифицированных рабочих на строительстве трубопроводов и уменьшить стоимость оборудования для сборки и сварки.
Для повышения уровня механизации сварки в полевых условиях, увеличения производительности труда и улучшения качества кольцевых швов за последние годы Киевским филиалом СКВ «Газтроймашина» и ВНИИСТ разработаны специальные трубосварочные установки, на которых в полустационарных условиях осуществляют автоматическую поворотную сварку под флюсом отдельных труб и секций. Эти секции доставляют на трассу, где их сваривают в непрерывную нитку. Под флюсом в полевых условиях сваривают около половины всех стыков магистральных трубопроводов.

Автоматическую сварку на трубосварочных базах будут применять и в дальнейшем, пока трубная промышленность не начнет выпускать трубы длиной 24 м, доставляемые на трассу железнодорожным транспортом.

Современные полу-стационарные базы предназначены для обслуживания строящихся трубопроводов, как правило, при доставке труб на расстояние от 15 до 100 км. В отличие от практики США и стран Западной Европы, где сваривают секции длиной 24 м из двух труб, в СССР на таких базах чаще всего сваривают секции длиной 36 м из трех труб. В большинстве случаев перевозить такие секции нетрудно, особенно в пустынных районах Севера и Средней Азии. В то же время применение длинномерных секций позволяет сократить объемы работы в тяжелых трассовых условиях.

При сварке труб диаметром до 1020 мм на трубосварочных базах чаще всего применяют установки типаПАУ-600 с торцевыми вращателями и легкими переносными автоматами ПТ-56, работающими с проволокой диаметром 2 мм. Эти установки имеют источник питания на 600 А от дизельного привода. За последние годы для тяжелых труб диаметром 1020 мм и более созданы новые, более совершенствованные типы трубосварочных установок для сварки под флюсом, на которых механизированы операции не только сварки, но и сборки. Такая установка (типа ПАУ-1001; рис. 19.1) в отличие от установки ПАУ-600 имеет роликовый вращатель, исключающий неравномерное вращение тяжелых секций. Сварку ведут в двух ков, внутренняя подварка швов, панорамное просвечивание самоходными установками для контроля швов, ультразвуковой контроль швов и т. п. 6 связи с изложенным в 1974 г. были приняты специальные меры по повышению технического уровня строительства магистральных нефтепроводов и газопроводов, обеспечению большей надежности их эксплуатации.

Было предусмотрено улучшение свойств труб, создание новой и усовершенствование существующей технологии сварки трубопроводов различными способами, создание новых сварочных материалов и новых средств контроля швов.

В настоящее время при строительстве трубопроводов применяют различные способы сварки, при этом с учетом сварки труб на трубных заводах на автоматическую сварку под флюсом приходится около 90% общего объема сварки. Ручную сварку применяют практически только в полевых условиях для соединения труб между собой.
Для ускорения строительства и повышения надежности трубопроводов максимально сокращают объем сварки в полевых условиях за счет увеличения длины труб, поставляемых с трубосварочных заводов. Если 10—12 лет назад трубы имели длину б м, то в настоящее время трубы больших диаметров поставляют длиной в основном 12 м. Ведутся работы по изготовлению труб еще большей длины. Так, например, один из участков газопровода Средняя Азия— Центр построен в опытном порядке из труб диаметром 1020 мм, длиной 24 м, изготовленных Новомосковским трубным заводом. Расчеты показывают, что увеличение длины труб позволит существенно уменьшить число квалифицированных рабочих на строительстве трубопроводов и уменьшить стоимость оборудования для сборки и сварки.

Для повышения уровня механизации сварки в полевых условиях, увеличения производительности труда и улучшения качества кольцевых швов за последние годы Киевским филиалом СКВ «Газкопроизводительные установки для двухсторонней автоматической сварки под флюсом с предварительным изменением геометрии кромок [3].


Широкое внедрение в производство двухсторонней автоматической сварки под флюсом значительно повышает уровень комплексной механизации. Для решения этой задачи применительно к поворотным стыкам, в частности, потребовалось определить оптимальную форму и размеры подготовки торцов труб с увеличенным притуплением и создать специальные станки для их обработки’ непосредственно на трассах. Станки серийно выпускает Гомельский завод Минстанкопрома.
Следующее направление в механизации сварки секции—применение стыковой сварки непрерывным оплавлением. Стыковая сварка непрерывным оплавлением уже освоена для труб диаметром до 530 мм на полустационарных установках типа ТКУС, изготовляющих трубные секции. Для обеспечения требуемого качества стыков применили регулятор, который вычисляет и поддерживает оптимальные параметры режима в процессе сварки труб.
По инициативе ВНИИСТ, ИЭС им. Е. О. Патона и КФ СКВ «Газстроймашина» на Электростальском заводе тяжелого машиностроения разработана и испытывается мощная установка для стыковой сварки непрерывным оплавлением трехтрубных секций из труб 720— 1020 мм.
Основным способом сварки неповоротных стыков при соединении секции в нитку трубопровода в настоящее время все еще остается ручная сварка с использованием мощных гидравлических центраторов для сборки конструкции СКВ «Газстроймашина» (рис. 19.2). Производительность при ручной сварке потолочных стыков трубопроводов при применении внутренних центраторов зависит от организации сборочно-сварочных работ.
При сварке магистральных трубопроводов чаще всего применяют поточно расчлененный метод сварки отдельных секций, при котором трубопровод становится как-бы неподвижным конвейером, по которому с заданной скоростью пере-двигаются сборщики и сварщики, каждый из которых производит одну и ту же операцию. Например, сварщики в голове бригады на каждом следующем собранном стыке сваривают определенную часть корневого шва, а сварщики, двигающиеся вслед за головным звеном, сваривают определенные участки заполняющих слоев шва.

Рис. 19.1. Установка ПАУ 1001 для сварки трехтрубных секций диаметром 1020—1420 мм

Рис. 19.2. Гидравлический внутренний центратор типа ЦВ

Производительность ручной сварки трубопроводов больших диаметров может быть увеличена за счет уменьшения количества присадочного металла. Для этого изменили характер подготовки кромок труб со стенкой толщиной 16 мм и более, при этом традиционную V-об-разную разделку с углом раскрытия кромок 70° заменили на фигурную (типа рюмки). Такая разделка на трубах диаметром 1420 мм уменьшила расход присадочного металла примерно на 20%. Для дальнейшего улучшения качества и повышения производительности неповоротной сварки, особенно труб большого диаметра, необходимо использовать систему автоматов, работающих в среде защитных газов поточно-расчлененным методом, подобно ручной сварке.

19.4 Зачистка первого слоя шва трубопровода диаметром 1420 мм.

19.3 Передвижная электроконтактная установка ТКУП для сварки стыков труб

Одним из перспективных направлений работ по механизации сварки секций труб на трассе непосредственно в нитку трубопровода является развитие стыковой сварки непрерывным оплавлением передвижными агрегатами. Этот способ разработан ИЭС им. Е. О. Патона с участием ВНИИСТ и КФ СКВ «Газстрой- машина». Новый способ применен на строительстве трубопроводов после раз-работки специального оборудования, позволяющего оплавлять трубы при сравнительно низкой удельной мощности—до 2 кВт/см2 (благодаря применению специальных контурных трансформаторов).

Для стыковой сварки труб в полевых условиях были разработаны передвижные трубосварочные агрегаты типа КТСА и ТКУП (рис. 19.3), сваривающие трубы диаметром до 530 мм. В ИЭС им. Е. О. Патона был создан опытный агрегат для сварки труб диаметром 720 мм, перемещающийся внутри трубопровода .

В настоящее время ИЭС им. Е. О. Патона при участии Миннефтегазстроя, ряда министерств и научно-исследовательских организаций создал, испытал и внедрил внутритрубную самоходную электроконтактную установку «Север» для сварки труб диаметром 1220— 1420 мм в северных районах страны. Первую установку испытали на газопроводе Оренбург — государственная граница диаметром 1420 мм. В 1977—1979 гг. такие установки начали работать на северных трубопроводах.
Широкое внедрение автоматов для дуговой сварки неповоротных стыков трубопроводов, а также установок для стыковой сварки потребует нескольких лет и значительных затрат. Поэтому производительность неповоротной сварки трубопроводов в ближайшее время будет возрастать также за счет организации крупных бригад сварщиков-потолочников.

Качество и производительность сварочно-монтажных работ в значительной мере зависит от применяемых сварочных материалов [8]. ВНИИСТ разработал и рекомендовал фтористокальциевые электроды типа ВСФ; фтористо-кальциевые электроды для сварки сверху вниз на спуск типа ВСФС и целлюлозные электроды типа ВСЦ также для сварки на спуск. Для автоматической сварки неповоротных стыков в среде углекислого газа применяют проволоку типа 08Г2С малого диаметра (0,8—1,2 мм). Сварку под флюсом ведут марганцовистыми или хромомолибденовыми проволоками под плавленными флюсами АН-348А, АН-22 или АН-47.

Применение труб большого диаметра из новых марок сталей с ограниченной свариваемостью потребовало разработать следующие новые технологические решения в области сварки.

Для обеспечения достаточной надежности сварки труб из высокопрочных сталей в ряде случаев оказалось необходимым подогревать стыки. Необходимость подогрева (и его температура) зависит от эквивалента углерода, толщины стенки трубы, температуры окружающего воздуха и типа электродов. Для сварки корня шва во ВНИИСТ были проведены теоретические и экспериментальные исследования этого вопроса и составлены специальные таблицы подогрева [10]. Подогрев производят кольцевыми газовыми горелками, работающими на пропане.

Ультразвуковой контроль трубопровода диаметром 1420 мм.

Рис. 19.6. Передвижная лаборатория для контроля сварных стыков типа PMЛ

Второе важное технологическое мероприятие — применение внутренней подварки стыков на трубах диаметром 1020—1420 мм, что позволило предотвратить почти половину разрушений по
сварным швам. Подварка потребовала некоторого изменения организации сварочно-монтажных работ и дополнительных мероприятий по обеспечению техники безопасности. В СКВ Газстрой- машина разработано специальное оборудование для сварки изнутри трубы.

С целью обеспечения высокого качества сварных соединений и облегчения труда в полевых условиях на строительстве магистральных трубопроводов широко применяют малую механизацию. На рис. 19.4 показана зачистка сварных швов от шлака высокооборотными шлифовальными машинками (8000 об./мин) с безопасными абразивными кругами.

  1. Качество сварочно-монтажных работ на трубопроводах должно быть обеспечено за счет надежных методов контроля.
  2. Способы контроля сварных стыков магистральных трубопроводов и объем контроля определяются строительными нормами и правилами (СНиП).
  3. Основные требования к качеству сварки и контролю магистральных трубопроводов отражены в СНиП Ш.Д 42—80, в соответствии с которым способ контроля сварных стыков и его объем зависит от категории магистрального трубопровода.
  4. Наиболее ответственные участки трубопроводов относятся к I и II категориям (всего имеется четыре категории).

Практика строительства ответственных трубопроводов, в том числе диаметром 1420 мм, показала, что целесообразно увеличивать объем контроля на первом этапе строительства и сокращать его до требований СНиП только после того, как достигнуто высокое качество работы данной сварочно-монтажной организации.


Для контроля качества сварных швов магистральных трубопроводов в СССР применяют просвечивание рентгеновскими и гамма-лучами, магнитографический контроль и контроль ультразвуком. Для контроля трубопроводов рентгеновскими лучами широко применяют импульсные рентгеновские аппараты типа ИРА, которые используют для панорамного или направленного просвечивания труб любого диаметра (от 75 до 1420 мм включительно). Такие аппараты имеют малую массу небольшие габариты.

  • В 1972 г. начато производство нового, более портативного импульсного рентгеновского аппарата РИНА-1Д, имеющего значительно большую частоту следования импульсов (15 Гц) и меньшую массу (масса блока составляет всего 5 кг).
  • Этим аппаратом стык трубы 1420X17,0 мм просвечивают панорамно изнутри всего за 10 с. Можно направленно просвечивать через две стенки стыки трубы диаметром до 1020 мм включительно.
  • Для контроля труб диаметром 720 мм и выше разработан рентгеновский аппарат РУП-160-6П с газовой изоляцией.
  • Аппарат обеспечивает просвечивание при панорамном и направленном излучении.

Для просвечивания трубопроводов радиоактивными изотопами широко применяют гамма-дефектоскопы РИД-21 Г, «Газпром» и «Трасса», заряженные цезием-137. Первые два аппарата используют для направленного просвечивания, а «Трассу» также и для панорамного. В 1972 г. гамма-дефектоскопы «Газпром» и «Трасса» были модернизированы, что позволило заряжать их изотопом иридий-192 с большей разрешающей способностью благодаря чему эффективность этого метода не уступает рентгеновскому просвечиванию.
При просвечивании потолочных стыков трубопроводов больших диаметров весьма эффективно применять внутритрубную установку, снабженную мощным источником гамма-излучения, которая самостоятельно перемещается внутри сваренного трубопровода и автоматически панорамно просвечивает кольцевые стыки. Эта установка может работать и с рентгеновскими аппаратами типа ИРА-2Д и РИНА-1Д.

Для контроля стыков трубопроводов широко применяют разработанный во ВНИИСТ магнитографический способ контроля [15], при котором дефекты записывают на магнитную ленту с последующим воспроизведением с помощью, например, дефектоскопа МДУ-2У.

Этот дефектоскоп имеет два вида индикации: телевизионную (видео-индикация) и импульсную, обеспечивающую качественную и количественную оценку дефектов, записанных на магнитную ленту.

  • Магнитографический метод контроля успешно применяют для сварных швов трубопроводов с толщиной стенки до 18 мм.
  • Этот способ отличается полной безопасностью и высокой производительностью.
  • Так, например, на объектах строительства трубопровода диаметром 1420 мм один контролер-магнитограф с помощником при нормальной организации труда может проконтролировать в течение рабочего дня до 15—18 поворотных сварных швов или до 12—14 потолочных швов.

В связи с увеличением толщины стенки современных сверхмощных трубопроводов необходимо применять ультразвуковую дефектоскопию (рис. 19.5). Чтобы существенно повысить производительность ультразвукового метода контроля, необходимо механизировать и автоматизировать все операции контроля.
Разрабатываются автоматизированные ультразвуковые установки для контроля кольцевых швов, сваренных электродуговой и электроконтактной сваркой.
Для контроля сварных соединений трубопроводов созданы специальные полустационарные и передвижные полевые испытательные лаборатории. Полу-стационарные лаборатории типа JIKG используют на трубосварочных базах, а передвижные лаборатории типа PMJI или BJIK (вездеходные) — для контроля неповоротных стыков трубопроводов (рис. 19.6).

источник

Adblock
detector