Меню Рубрики

Механизм образования деформаций при сварке

Деформации и напряжения при сварке. Механизм возникновения

Деформация-это изменение формы и размера деталей от механической нагрузки и от температурного воздействия.

Напряжение —это отношение силы к площади, на которую эта сила воздействует. В зависимости от направление действующих усилий могут возникать напряжения растяжения, сжатия, изгиба, среза и кручения. Напряжение, при котором происходит разрушение, называется пределом усталости. Главной причиной усталостных разрушений сварных соединений является сосредоточие напряжений. Внутренние напряжения при сварке возникают:

1) под действием неравномерного нагрева;

3) из-за структурных изменений.

Деформации могут быть временные, остаточные, местные, общие.

Временныминазываются деформации , которые возникают при сварке и исчезают после охлаждения.

Остаточными деформацияминазывают деформации, которые не исчезли после остывания.

Местные деформации —это участки, имеющие искажения в плоскости изделия

Причинами возникновения напряжений и деформаций при сварке являются:неравномерный нагрев металла, линейная усадка расплавленного металла, структурное превращение в металле.

Способы уменьшения деформаций и напряжений:

1.предварительный и сопутствующий подогрев при сварке;

2.правильная последовательность наложения швов;

3.рациональная технология сборки и сварки;

4.применение сварки обратноступенчатым способом;

5.жесткое закрепление деталей;

6.термообработка после сварки.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9865 — | 7711 — или читать все.

85.95.178.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Деформации и напряжения при сварке. Сварочные деформации и напряжения

Причины сварочных деформаций и напряжений

Деформации и напряжения при сварке возникают под действием теплоты, выделяемой источником сварочного тока. К главным причинам возникновения сварочных деформаций и напряжений относятся: неравномерный разогрев и остывание сварной конструкции, литейная усадка жидкой сварочной ванны, а также структурные преобразования в металле сварного шва и зоне термического влияния.

Неравномерное нагревание и остывание металлоконструкций при сварке является причиной возникновения тепловых внутренних напряжений. Изменение прочности и пластичности металлов происходит как при сварке чёрных металлов, так и при сварке цветных металлов и сплавов. При этом, чем выше температура нагрева и ниже теплопроводность металла, тем будут выше тепловые деформации и напряжения в сварном соединении.

Литейная усадка сварочной ванны является причиной формирования остаточных напряжений и деформаций в слоях металла, прилегающих к сварному шву. Происходит это из-за того, что при охлаждении, сварочная ванна уменьшается в объеме и начинает растягивать близлежащие слои металла. При этом, чем меньше объём сварочной ванны, тем меньше величина напряжений и деформаций, возникающих при её затвердевании.

Структурные преобразования в металле являются причиной возникновения растягивающих и сжимающих напряжений. И в отдельных случаях, эти преобразования вызывают изменение объёма свариваемого металла. При сварке низкоуглеродистых сталей, напряжения от структурных преобразований незначительны и на качество сварного соединения существенного влияния не оказывают. При сварке легированных сталей, содержащих более 0,35% углерода, деформации и напряжения при сварке довольно значительны и могут стать причиной для образования горячих трещин в сварном шве.

Внутренние напряжения и деформация при сварке отрицательно влияют на показатель прочности металлоконструкции. Ели свариваемые стали имеют склонность к образованию закалочных структур, то напряжения могут быть очень большими и, в отдельных случаях, даже вызвать горячие и холодные трещины при сварке.

Механизм образования деформаций и напряжений при сварке

Рассмотрим механизм образования остаточных деформаций и напряжений. Всем известно, что при нагревании металл расширяется, а при остывании — сужается. Но что произойдёт, если металл зажат, и ему некуда расширяться?

Для примера, поместим металлический брусок между стенками, как показано на рисунке. При этом посередине бруска выполняется сварочный шов и этот брусок, под действием электрической дуги, равномерно нагревается до температуры 600°C. При нагревании брусок будет нагреваться, и стремиться к удлинению. Но удлиняться бруску некуда, т.к. мешают стенки, между которых он зажат. В результате, на брусок начинают действовать сжимающие усилия от боковых стенок.

Под воздействием боковых стенок, нагретый брусок, ставший более пластичным, сминается и перестаёт распирать стенки. Затем, при остывании, он начинает сужаться и укорачивается на ту величину, на которую не смог удлиниться. Боковые стенки не позволили бруску свободно расшириться и, в результате, в нём образовались внутренние напряжения растяжения.

Схожие механизмы происходят и при сварке металлов. Слои основного металла, которые не подверглись нагреванию и сохранили жёсткость, не дают укорачиваться металлу околошовной зоны. А слои металла в околошовной зоне, в свою очередь, стремятся смять металл, расположенный рядом сними.

Сложная картина напряжений и деформаций внутри металла при сварке ещё более усложняется при выполнении пересекающихся швов, или в случае выполнения предварительного подогрева, или при закреплении свариваемых изделий. В результате, металлоконструкции после сварки деформируются, изгибаются, коробятся. И происходит это задолго до воздействия на них эксплуатационных нагрузок. Далее рекомендуем ознакомиться со статьёй: «Виды деформаций и напряжений при сварке», которая является продолжением темы деформаций при сварке.

источник

Виды и причины сварочных деформаций

Сварка обеспечивает самое прочное и надежное соединение, если проведена правильно. Однако при нарушении технологии в конструкции возникают напряжения и деформации, вызванные сварочным процессом. Искажается форма и размеры изделия, в результате чего оно не может выполнять свои функции.

Что такое напряжение

Сварочное напряжение определяют как силу, действующую на единицу площади изделия. Оно может быть вызвано растягивающим, изгибающим, крутящим, сжимающим или срезающим усилием.

Эти силы достигают таких величин, что в процессе эксплуатации напряжения и деформации в отдельных деталях приводят к разрушению всей конструкции. Кроме этого происходит снижение антикоррозионных свойств, меняются геометрические размеры и жесткость конструкции.

Напряжения и деформации бывают временными и остаточными. Какие сварочные деформации называют временными, а какие остаточными определяется просто. Временные появляются во время сваривания деталей, вторые появляются и остаются после окончания сварки и охлаждения конструкции.

Причины появления

Главные причины возникновения напряжений и сварочных деформаций такие:

  • неоднородный нагрев металлических заготовок;
  • усадочные изменения сплава в сварном шве;
  • фазовые изменения, возникающие при переходе расплавленного металла из одного состояния в другое.

Одним из свойств металлов является их способность расширяться при повышении температуры и сжиматься при охлаждении. При плавлении в области сварочного соединения появляется неоднородная термозона.

Она вызывает напряжения сжимающего или растягивающего свойства. Если эти напряжения превышают предел текучести металла, то происходит изменение формы изделия, возникают остаточные деформации.

Разновидности деформаций зависят от того, в каких объемах они проявляются. Выделяют три рода. Деформации первого рода действуют в макрообъемах, деформации второго рода происходят в пределах кристаллических зерен, а третьего рода происходят в кристаллической решетке металла.

Деформации и напряжения при сварке возникают и при кристаллизации сварного шва, когда происходит усадка жидкого металла. Объем остывающего жидкого металла уменьшается, это вызывает напряжения внутри металла. Параллельно и перпендикулярно оси сварочного шва формируются напряжения, которые вызывают изменение формы изделия. Продольные силы вызывают изменения длины сварного шва, а поперечные приводят к угловым деформациям.

При превышении определенных предельных температур при сваривании углеродистых и легированных сталей происходит их структурное превращение. У них появляется другой удельный объем и изменяется коэффициент линейного расширения, что приводит к огромным сварочным напряжениям.

Самые большие из них возникают в легированных сталях. В них образуются закалочные структуры, которые при охлаждении не возвращаются к прежней структуре металла, как в большинстве случаев, а сохраняют колоссальные напряжения могущие привести к разрушению сварного шва.

Для этих сплавов разрабатываются специальные технологические процессы, снижающие остаточные напряжения и деформации.

Как предотвратить

Для предупреждения вредных воздействий сварочных деформаций необходимо соблюдать следующие правила и провести несколько мероприятий:

  • сварных швов должно быть минимум, и они должны быть как можно короче;
  • количество пересекающихся и разнотолщинных швов так же сводят к минимуму;
  • сварочные соединения делают с плавным переходом толщин;
  • металл наплавляют в минимальном количестве;
  • в самых напряженных местах конструкции швы вовсе не делают;
  • оставляют припуск на усадку.

Необходимо правильно выбирать способ сварки, который зависит от свариваемости материалов, энергии и режима. Чтобы уменьшить зону прогрева, нужно увеличить скорость сваривания. Для увеличения глубины сварки (прогрев в толщину) необходимо увеличить силу тока.

Для уменьшения вредных воздействий нагрева в зоне сваривания сварщику необходимо по возможности избегать прихваток.

Положительный результат дает использование зажимов и других сварочных приспособлений. Они позволяют сохранить подвижность деталей при сварке в продольном направлении и препятствовать угловому перемещению.

Заготовки располагают таким образом, чтобы возникающие при остывании сварочные деформации были противоположны напряжениям.

Для уменьшения остаточных напряжений и деформаций надо использовать предварительный нагрев. Кроме этого нужно правильно выбрать технологию сварки.

Последовательность наложения швов должна уравновешивать возникающие напряжения. Накладывать швы надо так, чтобы свариваемые детали имели наибольшую подвижность.

В процессе сварки проводят проковку сварного шва, что деформирует остывающее сварное соединение и уменьшает воздействие усадки.

Способы устранения напряжений

Напряжения устраняют отжигом или механическими методами. Отжиг является самым эффективным методом снятия напряжений. Его применяют, когда к изделию предъявляются повышенные требования к точности геометрических размеров.

Он может быть общим или местным. Чаще всего отжиг производят при 550-680 °C. Выделяют три его стадии: нагрев, выдержка, остывание.

Из механических способов устранения напряжений применяют проковку, прокатку, вибрацию, обработку взрывом, приводящие к пластической деформации обратного знака.

Проковку делают пневмомолотком, а виброобработку специальным устройством вызывающим вибрацию изделия с резонансной частотой в пределах 10-120 Гц в течение нескольких минут.

Способы устранения деформаций

Сварочные деформации могут проходить в плоскости и с выведением из плоскости. О деформациях в плоскости говорят, когда изменяются геометрические размеры конструкции. Деформация из плоскости соответствует угловым изменениям детали, искривлению листовой поверхности.

Для устранения таких явлений применяют термическую правку с местным или общим нагревом, холодную механическую и термомеханическую.

Термический способ с местным нагревом основывается на том, что при охлаждении металл сжимается. Для устранения сварочных деформаций растянутую часть изделия сначала нагревают (горелкой или дугой), при этом окружающий сплав остается холодным и не дает горячему участку сильно расшириться.

При остывании изделие выпрямляется. Так правят балки, листовые полосы и некоторые другие детали.

Если происходит полный отжиг, то конструкцию закрепляют в устройстве, создающем давление на требуемые зоны, и помещают в печь для нагрева.

Холодную правку делают, используя постоянные нагрузки. Для этого применяют различные прессы или валки для прокатки длинномерных изделий типа труб или двутавровых балок, в необходимых местах они деформируются.

Термомеханическую правку производят с применением силовой нагрузки при местном нагреве изделия. Такой способ применяют к сильно растянутым деталям. Вначале собирают излишек металла в так называемые купола, а затем прогревают эти участки.

Технологию правки выбирают в зависимости от особенностей сварочной деформации и типа металлического изделия, его размеров, конфигурации. Обращают внимание также и на трудозатраты, останавливаясь на самом эффективном методе.

источник

Причины возникновения напряжений и деформаций при сварке

Деформации в сварных конструкциях являются результатом наличия внутренних напряжений, которые могут вызываться различными причинами. К неизбежным причинам, способствующим возникновению напряжений и деформаций, относятся такие, без которых процесс обработки происходить не может — неравномерный нагрев, кристаллизационная усадка швов, структурные изменения металла шва и околошовной зоны и т. д.
К сопутствующим причинам, способствующим возникновению напряжений и деформаций, относятся неправильные решенная конструкции сварных узлов (близкое расположение швов, их частое пересечение, неправильно выбранный тип соединения и т. п.), применение устаревшей техники и технологии сварки (неверно выбраны способы наложения слоев и диаметр электрода, не соблюдаются режимы сварки и т. д.), низкая квалификация сварщика, нарушение геометрических размеров сварных швов и т. п.
Кристаллизационная усадка металла шва вызывается тем, что при охлаждении металл шва уменьшается в объеме, но поскольку одновременно шов имеет жесткую связь с относительно холодным основным металлом, его усадка вызывает появление внутренних напряжений.
Кристаллизационная усадка незакрепленного (свободного) образца приведет лишь к его укорочению. Если же усадка будет иметь место в условиях жесткого закрепления свариваемых деталей или в условиях неравномерного (неодинакового) нагрева, то в этом случае в конструкции после остывания образуются внутренние напряжения, вызывающие ее деформацию. В процессе снижения температуры в жестко закрепленной детали будут возникать силы растяжения, стремящиеся ее разорвать.

Классификация сварочных деформаций. Сварные конструкции в результате появления упругопластических деформаций в сварных соединениях могут изменить свои размеры и претерпеть общие деформации — продольные и поперечные, изгиба, скручивания и потери устойчивости.
В результате продольных и поперечных деформаций происходит сокращение элементов по длине и ширине, эти деформации образуются при симметричной укладке сварных швов.
Деформации изгиба появляются при несимметричном расположении сварных швов в конструкциях и сопровождаются продольным сокращением элементов (продольной усадкой) и поперечным сокращением (поперечной усадкой швов). Этот вид деформации в практике встречается довольно часто.
Деформации скручивания образуются вследствие несимметричного расположения швов в поперечных сечениях элементов и встречаются относительно редко.
Деформации потери устойчивости вызываются сжимающими напряжениями, которые образуются в процессе нагревания и остывания изделий.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9865 — | 7711 — или читать все.

источник

Причины возникновения напряжений и деформаций

Одним из свойств металла является изменение размера под воздействием температур. Под воздействием высокой температуры металл расширяется. Как сильно он расшириться зависит от температуры нагрева и коэффициента линейного расширения материала.

Деформации и напряжения могут быть вызваны не только воздействием внешних сил. Существуют так званые собственные напряжения и деформации, которые присутствуют в металле даже без воздействия на него. Собственные напряжения могут быть реактивными и остаточными. Остаточные напряжения появляются в результате местной пластичной деформации и остаются у изделия после сварки. Реактивными называют напряжения возникшие во время сварки жестко закрепленной конструкции.

Классификация напряжений и деформаций

В зависимости от причины возникновения собственные напряжения разделяют на:

  • тепловые напряжения — появляются в следствии неравномерного распределения температуры во время сварки;
  • структурные напряжения — появляются в следствии преобразования структуры во время нагревания выше критической температуры.

В зависимости от времени существования собственные напряжения бывают:

  • временные — существуют при определенных фазовых преобразованиях и исчезают при охлаждении;
  • остаточные — остаются даже после исчезновения причин их образования.

Зависимо от площади действия различают три вида напряжений:

  • напряжения которые действуют в объемах конструкции;
  • напряжения которые действуют в рамках зерен металла;
  • напряжения которые существуют в кристаллической решетке металла.

По направлению действия напряжения и деформации бывают:

  • продольные — вдоль оси сварочного шва;
  • поперечные — направленны перпендикулярно оси шва.

По виду напряженного состояния напряжения бывают:

  • линейные — действуют в одном направлении;
  • плоскостные — действуют в двух направлениях;
  • объемные — действуют в трех направлениях.

Напряжения также могут быть сдавливающими и растягивающими.

Деформацию называют общей если она изменяет размер всего изделия, и местной — если она изменяет часть изделия.

Деформации могут быть пластичными и упругими. Если конструкция восстанавливает свою форму и размер после сварки, то такая деформация называется упругой, а если не восстанавливается — пластичной.

Во время выполнения сварки конструкций возникают напряжения и деформации. Напряжение которое превышает границы текучести метала приводит к появлению пластических деформаций, которые изменяют размеры и форму конструкции. Напряжения превышающие границу прочности приводит к появлению в трещин.

Причины появления напряжений и деформаций

Структурные преобразования

При сварке легированных и высокоуглеродистых сталей часто возникают структурные преобразования в металле — меняются размеры и расположение зерен металла при охлаждении. Поэтому меняется первоначальный объем металла и возникают внутренние напряжения.

Неравномерное нагревание

Рис. Неравномерный нагрев металла

При нагревании металла жестко связанного с холодным металлом образовываются сдавливающие и растягивающие напряжения. Это связано с изменением размеров размеров металла при нагревании.

Литейная усадка

Литейная усадка расплавленного металла сопровождается уменьшением объема металла при его кристаллизации. Так как расплавленный металл связан с основным в под воздействием литейной усадки возникают продольные и поперечные напряжения.

Рис. Деформации от поперечной усадки

Рис. Деформации от продольной усадки

Методы противодействия напряжениям и деформациям

Предварительный и сопроводительный подогрев

Предварительный и сопроводительный подогрев сталей улучшает механические качества шва и прилегающей зоны, уменьшает пластические деформации и остаточные напряжения. Используют для сталей склонных к закалке и образованию кристаллизационных трещин.

Обратно ступенчатый порядок наложения швов

Рис. Обратно ступенчатый порядок наложения швов

Длинные швы (свыше 1000 мм) разбиваются на участки по 100-150 мм и каждый из них ведется в направлении обратном направлению сварки. Используя обратно ступенчатый порядок наложения швов можно добиться более равномерного нагревания металла в сравнении с последовательным наложением. Равномерное нагревание металла значительно уменьшает деформации.

Проковка швов

Проковывать можно как нагретый так и холодный металл. При ударе металл разжимается в разные стороны, что уменьшает растягивающие напряжения. Сварочные швы на металле склонному к образованию закалочных структур не проковывают.

Уравновешивание деформаций

Способ заключается в выборе такого порядка наложения швов при котором каждый следующий шов создает деформацию противодействующую предыдущему. Например, поочередное наложение слоев при сварке двусторонних соединений.

Создание обратных деформаций

Детали собирают под сварку изначально под определенным углом. Когда во время сварки детали сближаются друг к другу деформация уменьшается.

Жесткое крепление деталей

Для этого используют жесткое закрепление деталей в кондукторах. Детали находятся закрепленными все время сварки, вынимают их после охлаждения. Недостатком является возможность возникновения внутренних напряжений.

Термическая обработка

Термическая обработка хорошо влияет на свойства шва и околошовной зоны, снижает внутренние напряжения и выравнивают структуру шва.

источник

Механизм образования деформации

Все металлы в том виде, в каком они применя­ются в машиностроении, имеют поликристаллическую струк­туру, т.е. состоят из множества мелких кристалликов, хао­тически расположенных в объеме. Внутри кристаллов атомы металла располагаются в определенном порядке, образуя пра­вильную пространственную решетку. Система расположения атомов зависит от свойств атомов. Она меняется также в за­висимости от физических условий кристаллизации.

Приложение сдвиговых напряжений τ к плоскостям внутри кристалла приводит к перемещению атомов из первоначального положения на величину δ. Если перемещение мало, то деформация упруга и обратима. Это означает, что после снятия приложенного сдвигового напряжения атомы возвращаются в первоначальное положение. Если, однако, величина сдвигового напряжения достаточно велика, чтобы переместить атом в среднее положение между атомами 2 и 4, то этот атом будет находиться в состоянии неустойчивого равновесия по отношению к атомам 2 и 4 и может занять либо новое равновесное положение непосредственно над атомом 4, либо вернуться в первоначальное положение над атомом 2.

Рис. 8 Деформация простой кубической решетки атомов

при приложении касательного напряжения

Если атом 1 действительно займет новое положение над атомом 4, симметрия решетки сохранится, но у атомов, распо­ложенных с разных сторон от плоскости сдвига, появятся новые соседние атомы. В этом случае говорят, что в кристалле произошло сколь­жение или что кристалл пластически деформировался на одно межатомное расстояние.

Пластическая деформация кристаллических материалов происхо­дит одним или несколькими из следующих четырех путей: (1) сколь­жением, (2) двойникованием, (3) скольжением по границам зерен и (4) диффузионной ползучестью.

Последние два механизма проявляются в основном при высоких температурах и малых скоростях деформирования. Наиболее распространенным механизмом пластического деформирования является плавное движение одной плоскости атомов над другой, называемое обычно скольжением. В любой кристаллической решетке некоторые плоскости и направления более других предрасположены к возникновению в них скольжения, что приводит к появлению полос из тонких параллельных линий скольжения на поверхности кристалла при его пластическом деформировании.

Плоскостями скольжения обычно являются наиболее плотно упакованные атомами плоскости кристаллической решетки. Про­цесс скольжения осуществляется движением атомов на целое число межатомных расстояний. Таким образом, после скольжения общая симметрия решетки сохраняется, но на свободной поверхности за­метен след скольжения. Если свободную поверхность отполировать, то все следы скольжения исчезнут и конфигурацию кристалличе­ской решетки будет невозможно отличить от ее первоначальной конфигурации до начала скольжения.

Чтобы осуществить скольжение относительно друг друга плос­костей упорядоченно расположенных атомов, требуется приложить достаточно большое сдвиговое напряжение, которое могло бы прео­долеть силы взаимодействия между атомами одной плоскости и близко расположенными к ним атомами другой плоскости. Расчеты, произведенные различными способами, показывают, что для осу­ществления такого скольжения одной плоскости атомов относитель­но другой (пластической деформации) в обычных металлах теоре­тически потребовалось бы приложить сдвиговое напряжение по­рядка

0,7-10 5 ….1,5-10 5 кгс/см 2 . Фактически же обычно замеряемые в опытах величины составляют лишь 700…3500 кгс/см 2 . Естественно возникает вопрос: почему наблюдается такое большое несоответствие между теоретическими и наблюдаемыми в опытах значениями критического сдвигового напряжения, требуе­мого для осуществления пластической деформации?

Основная погрешность принятой расчетной схемы за­ключается в предположении, что смещение атомов при сдвиге происходит по всей плоскости одновременно.

Тейлор, Орован и Полани в 30-х годах предположили возможность существования дефектов кристаллической решетки, которые способны двигаться под действием удивительно малых напряжений, вызывая пластическую дефор­мацию. Эти несовершенства решетки были названы дислокациями, а понятие подвижности дислокаций явилось тем недостающим зве­ном, которое, в конце концов, поставило теорию дислокаций над всеми предшествующими теориями.

Основанные на использовании этого понятия интенсивные ис­следования, проводившиеся более четверти века, убедительно доказали существование дислокаций во всех материалах.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Причины возникновения деформаций и напряжений при сварке

При сварке металлических конструкций в них возникают напряжения, которые в отличие от напряжений, вызываемых внешними рабочими нагрузками, носят название внутренних или сварочных. Сварочные напряжения и деформации подразделяются:

  • временные, т. е. существующие в период осуществления сварки;
  • остаточные, сохраняющиеся и после процесса сварки.

Следует также различать деформации в зоне сварных соединений и деформации сварной конструкции в целом. Деформации в сварных конструкциях являются результатом наличия внутренних напряжений, которые могут вызываться различными причинами. Любой металл при нагревании расширяется, а при охлаждении сжимается. При изменении температуры меняется структура металла, происходит перегруппировка атомов из одного типа кристаллической решетки в другой, увеличивается или уменьшается объем.

В результате литейной усадки наплавленного металла, неравномерного нагрева в процессе сварки, изменения объема металла, вызванного изменением структуры металла при сварке, возникают напряжения. Затвердевание жидкого присадочного металла в сварочной ванне и последующее охлаждение приводят к уменьшению его объема. При этом затвердевающий металл уже прочно связан с основным металлом, и усадка вызывает появление внутренних напряжений. Если нагреваемое тело встречает препятствие своему расширению, то в нем возникают напряжения, направленные на преодоление этого препятствия.

При сварке основной металл нагревается в зоне плавления до температуры более высокой, чем температура металла, окружающего сварочную ванну и удаленного от нее. Неравномерный нагрев металла, вызванный сваркой, приводит к появлению сжимающих сил в зоне металла, прилегающей ко шву, и растягивающих сил вдали от сварного шва. В результате происходит коробление сварного соединения. Кроме того, затвердевание и охлаждение металла шва приводят к его усадке и деформации свариваемого изделия. Структурные напряжения связаны с изменением размеров кристаллов и их взаимного расположения и сопровождаются изменением объема тела, вызывающим внутренние напряжения. Внутренние силы, возникающие в металле при сварке, могут быть достаточными, чтобы привести к образованию трещин в швах или рядом с ними.

Напряженное состояние, вызванное сваркой малопластичных материалов или материалов, склонных к закалке (чугуна, легированных и инструментальных сталей и др.), способствует образованию трещин в сварном шве и основном металле.

Представление о причинах возникновения тепловых сварочных деформаций и напряжений дает ознакомление с процессом нагрева и охлаждения стержня при его различном закреплении.

Если нагреть стержень до температур, вызывающих только упругое деформирование, то при его охлаждении до исходной температуры в нем не возникнет никаких напряжений и остаточных деформаций и длина его останется неизменной. Если же температура нагрева стержня превысит величину, при которой напряжения сжатия превысят предел текучести материала, то в стержне появятся пластические деформации и он начнет сжиматься. Если после этого сжатия стержень охладить до начальной температуры, то его длина окажется короче на величину пластического сжатия.

источник

Деформации и напряжения при сварке

Деформации и напряжения при сварке

Процесс, при котором в результате воздействия силы форма и размер твердого тела изменяют свою форму, называется деформацией. Различаются следующие ее виды:

– упругая, при которой тело восстанавливает исходную форму, как только действие силы прекращается. Такая деформация, как правило, бывает незначительной, например для низкоуглеродистых сталей она составляет не более 0,2 %.

– остаточная (пластическая), возникающая в том случае, если тело после устранения воздействия не возвращается в первоначальное состояние. Этот вид деформации характерен для пластичных тел, а также отмечается при приложении к телу очень значительной силы. Для пластической деформации нагретого металла, в отличие от холодного, требуется меньше нагрузки.

Степень деформации зависит от величины приложенной силы, т. е. между ними прослеживается прямо пропорциональная зависимость: чем больше сила, тем сильнее деформация.

Силы, которые действуют на изделие, делятся на:

– внешние, к которым относятся собственно вес изделия, давление газа на стенки сосуда и пр. Такие нагрузки могут быть статическими (не изменяющимися по величине и направлению), динамическими (переменными) или ударными;

– внутренние, возникающие в результате изменения структуры металла, которое возможно под воздействием внешней нагрузки или, например, сварки и др. Рассчитывая прочность изделия, внутреннюю силу обычно называют усилием.

Величину усилия характеризует и напряжение, которое возникает в теле в результате этого усилия. Таким образом, между напряжением и деформацией имеется тесная связь.

Относительно сечения металла действующие на него силы могут иметь разное направление. В соответствии с этим возникает напряжение растяжения, сжатия, кручения, среза или изгиба (рис. 3).

Рис. 3. Виды напряжения, изменяющие форму металла и сплава (стрелки указывают направление уравновешивающих сил): а – растяжение; б – сжатие; в – кручение; г – срез; д – изгиб

Появление деформации в сварных конструкциях объясняется возникновением внутренних напряжений, причины которых могут быть разными и подразделяются на две группы.

К первой относятся неизбежные причины, которые обязательно возникают в ходе обработки изделия. При сварке это:

1. Кристаллизационная усадка наплавленного металла. Когда он переходит из жидкого состояния в твердое, его плотность возрастает, поэтому изменяется и его объем (это и называется усадкой), например уменьшение объема олова в таком случае может достигать 26 %. Данный процесс сопровождается растягивающими напряжениями, которые развиваются в соседних участках и влекут за собой соответствующие им напряжения и деформации. Усадка измеряется в процентах от первоначального линейного размера, а каждый металл или сплав имеет собственные показатели (табл. 1).

Таблица 1. ЛИНЕЙНАЯ УСАДКА НЕКОТОРЫХ МЕТАЛЛОВ И СПЛАВОВ

Напряжения, причиной которых является усадка, увеличиваются до тех пор, пока не наступает момент перехода упругих деформаций в пластические. При низкой пластичности металла на наиболее слабом участке может образоваться трещина. Чаще всего таким местом бывает околошовная зона.

При сварке наблюдаются два вида усадки, которые вызывают соответствующие деформации:

а) продольная (рис. 4), которая приводит к уменьшению длины листов при выполнении продольных швов. При несовпадении центров тяжести поперечного сечения шва и сечения свариваемой детали усадка вызывает ее коробление;

Рис. 4. Продольная усадка и деформации при различном расположении шва по отношению к центру тяжести сечения элемента: а – при симметричном; б, в – при несимметричном; 1 – график напряжений; 2 – шов; ?L – деформация; b – ширина зоны нагрева; напряжение сжатия; + – напряжение растяжения; г – при несимметричном; 2 – шов

б) поперечная (рис. 5), следствием которой всегда является коробление листов в сторону более значительного объема наплавленного металла, т. е. листы коробятся вверх, в направлении утолщения шва. Фиксация детали воспрепятствует деформации от усадки, но станет причиной возникновения напряжений в закрепленных участках.

Рис. 5. Поперечная усадка и деформации: а – деформации до и после сварки; б – график распределения напряжения (О – центр тяжести поперечного сечения шва; напряжение сжатия; + – напряжение растяжения)

Величина деформаций при сварке зависит, во-первых, от размера зоны нагрева: чем больший объем металла подвергается нагреванию, тем значительнее деформации. Следует отметить, что для различных видов сварки характерны разные по размеру зоны нагрева и деформации, в частности при газовой сварке кислородно-ацетиленовым пламенем она больше, чем при дуговой сварке.

Во-вторых, имеют значение размер и положение сварного шва. Величина деформации тем существеннее, чем длиннее шов и больше его сечение, определенную роль играют также несимметричность шва и главной оси сечения свариваемого изделия.

В-третьих, если деталь сложна по своей форме, то швов на ней бывает больше, поэтому можно предположить, что напряжения и деформация обязательно проявятся.

2. Неравномерный нагрев свариваемых частей или деталей. Как известно, при нагревании тела расширяются, а при охлаждении – сужаются. При сварке используется сосредоточенный источник тепла, например сварочная дуга или сварочное пламя, который с определенной скоростью перемещается вдоль шва и поэтому неравномерно нагревает его. Если свободному расширению или сокращению мешают какие-либо препятствия, то в изделии развиваются внутренние напряжения. Более холодные соседние участки и становятся такой помехой, поскольку их расширение выражено в меньшей степени, чем у нагретых участков. Поскольку термические напряжения, ставшие следствием неравномерного нагревания, развиваются без внешнего воздействия, то они называются внутренними, или собственными. Наиболее важными являются те из них, которые возникают при охлаждении изделия, причем напряжения, действующие вдоль шва, менее опасны, поскольку не меняют прочности сварного соединения, в отличие от напряжений, перпендикулярных шву, которые приводят к образованию трещин в околошовной зоне;

3. Структурные трансформации, которые развиваются в околошовной зоне или металле шва. В процессе нагревания и охлаждения металла размер и расположение зерен относительно друг друга изменяются, что отражается на объеме металла и становится причиной возникновения внутренних напряжений со всеми вытекающими последствиями, представленными в первом пункте. В наибольшей степени этому подвержены легированные и высокоуглеродистые стали, предрасположенные к закалке; низкоуглеродистые – в меньшей. В последнем случае при изготовлении сварных конструкций это явление может не приниматься в расчет.

Вторую группу составляют сопутствующие причины, которые можно предупредить или устранить. К ним относятся:

– ошибочные конструктивные решения сварных швов, например небольшое расстояние между соседними швами, слишком частое пересечение сварных швов, ошибки в выборе типа соединения и др.;

– несоблюдение техники и технологии сварки, в частности плохая подготовка кромок металла, нарушение режима сварки, использование несоответствующего электрода и др.;

– низкая квалификация исполнителя.

Величина деформаций при сварке во многом определяется теплопроводностью металла. Между ними существует прямо пропорциональная зависимость: чем выше теплопроводность, тем более равномерно распространяется поток тепла по сечению металла, тем менее значительными будут деформации. Например, при сварке нержавеющей стали как менее теплопроводной возникают большие деформации, чем при сварке низкоуглеродистых сталей.

Напряжения и деформации, которые имеют место исключительно в ходе сварки, а по ее окончании исчезают, называются временными; а если они сохраняются после охлаждения шва – остаточными. Практическое значение последних особенно велико, поскольку они могут сказываться на работе детали, изделия, всей конструкции. Если деформации носят локальный характер (например, на отдельных участках появляются выпучины, волнистость и др.), то они называются местными; если в результате деформации терпят изменения геометрические оси и размеры изделия или конструкции в целом – общими.

Кроме того, деформации могут возникать как в плоскости изделия, так и вне ее (рис. 6).

Рис. 6. Некоторые виды деформации: а – в плоскости сварного соединения; б – вне плоскости сварного соединения; 1 – форма изделия до сварки; 2 – форма изделия после сварки

Для уменьшения деформаций и напряжений при сварке придерживаются следующих конструктивных и технологических рекомендаций:

1. При подборе материала для сварных конструкций руководствуются правилом: использовать такие марки основного металла и электродов, которые либо не имеют склонности к закалке, либо подвержены ей в наименьшей степени и способны давать пластичный металл шва.

2. Избегают закладывать в конструкциях (особенно в ответственных), тем более рассчитанных на работу при ударах или вибрации, многочисленные сварные швы и их пересечения, а также использовать короткие швы замкнутого контура, поскольку в этих зонах, как правило, концентрируются собственные напряжения. Чтобы снизить тепловложения в изделие или конструкцию, оптимальная длина катетов швов должна быть не более 16 мм.

3. Стараются симметрично располагать ребра жесткости в конструкциях и сводят их количество к минимуму. Симметричность необходима и при расположении сварных швов, так как это уравновешивает возникающие деформации (рис. 7), т. е. последующий слой должен вызывать деформации, противоположные тем, которые развились в предыдущем слое.

Рис. 7. Последовательность наложения сварных швов для уравновешивания деформаций

Эффективен и способ обратных деформаций (рис. 8). Перед сваркой в конструкции (как правило, швы в ней должны располагаться с одной стороны относительно оси либо на различных расстояниях от нее) вызывают деформацию, обратную той, что возникнет в ней при сварке.

Рис. 8. Сваривание гнутых профилей как пример применения обратной деформации

4. Ограничивают применение таких способов соединения, как косынки, накладки и др.

5. По возможности отдают предпочтение стыковым швам, для которых концентрация напряжений не столь характерна.

6. Предполагают минимальные зазоры на разных участках сварки.

7. В сопряжениях деталей предусматривают возможность свободной усадки металла шва при охлаждении в отсутствие жестких заделок.

8. Практикуют изготовление конструкций по секциям, чтобы потом сваривать готовые узлы. Если последние имеют сложную конфигурацию, то заготавливают литые и штампованные детали, чтобы снизить неблагоприятное воздействие жестких связей, которые дают сварные швы.

9. Выбирают технологически обоснованную последовательность (рис. 9) выполнения сварных швов, при которой допускается свободная деформация свариваемых деталей. Если, например, требуется соединить листы, то в первую очередь выполняют поперечные швы, в результате чего получают полосы, которые потом сваривают продольными швами. Такая очередность исключает жесткую фиксацию соединяемых частей листов и позволяет им свободно деформироваться при сварке.

Рис. 9. Оптимальная последовательность выполнения сварных швов при сварке листов: а – настила; б – двутавровой балки

Направление ведения сварного шва также имеет значение. Если вести его на проход либо от центра к концам, то в середине шва разовьются поперечные напряжения сжатия; если двигаться от краев к центру, то в середине шва не избежать появления поперечных напряжений растяжения, следствием которых будут трещины в околошовной зоне или самом шве (рис. 10).

Рис. 10. Напряжение в продольном сечении шва при сварке (– – напряжение сжатия; + – напряжение растяжения): а – на проход; б – от концов к центру

10. При соединении частей из металла значительной толщины (более 20–25 мм) применяют многослойную дуговую сварку, выполняя швы горкой или каскадом (рис. 11). Шов горкой накладывается следующим образом: первый слой имеет длину примерно 200–300 мм, второй длиннее первого в 2 раза, третий длиннее второго на 200–300 мм и т. д. Достигнув «горки», сварку продолжают в обе стороны от нее короткими валиками. Такой способ способствует поддержанию участка сварки в нагретом состоянии. В результате тепло распространяется по металлу более равномерно, что снижает напряжения.

Рис. 11. Очередность наложения швов при многослойной дуговой сварке (размеры указаны в миллиметрах): а – горкой; 1 – ось «горки»; 2 – толщина металла; б – каскадом

11. Помогает снизить коробление швов соединяемых конструкций и деталей выполнение швов в обратноступенчатом порядке (рис. 12). Для этого протяженные швы делят на части длиной 150–200 мм и сваривают их, ведя каждый последующий слой в направлении, обратном предыдущему слою, причем стыки следует размещать вразбежку. Причина таких действий заключается в том, что деформации в соседних участках будут противоположно направленными по отношению друг к другу и равномерными, поскольку металл будет прогреваться равномерно.

Рис. 12. Последовательность наложения обратнопоступательного шва

12. Рассчитывают адекватный тепловой режим сварки. Если при работе есть возможность перемещать изделие (деталь) или если основной металл предрасположен к закалке, тогда используют более сильный тепловой режим, благодаря чему объем разогреваемого материала возрастает, а сам он остывает медленнее. В определенных ситуациях (если сварка проводится при пониженной температуре воздуха, металл имеет большую толщину или является сталью, склонной к закалке, и др.) помогают предварительный или сопровождающий подогрев либо околошовной зоны, либо всего изделия. Температура, до которой следует довести металл, зависит от его свойств и составляет 300–400 °C для бронзы, 250-270 °C для алюминия, 500–600 °C для стали, 700–800 °C для чугуна и т. д.

Если сваривают жестко зафиксированные детали или конструкции, тогда применяют менее интенсивный тепловой режим и варят электродами, способными давать пластичный металл шва.

13. Осуществляют отжиг и нормализацию изделия или конструкции после окончания сварки (последнее полностью ликвидирует напряжения). При отжиге температуру стального изделия доводят до 820–930 °C, выдерживают (общее время составляет примерно 30 минут, длительная выдержка нежелательна, поскольку приводит к росту зерен) и постепенно охлаждают (на 50–75 °C в час), доводя температуру до 300 °C. Это дает ряд преимуществ: во-первых, шов приобретает мелкозернистую структуру с улучшенным сцеплением зерен, благодаря которой металл шва и околошовной зоны становится более пластичным, во-вторых, металл шва получается менее твердым, что имеет большое значение для последующей обработки резанием или давлением; в-третьих, это полностью снимает внутренние напряжения в изделии.

Основные отличия нормализации от полного отжига – более высокая скорость охлаждения, для чего температура, до которой нагревают изделие, на 20–30 °C превышает критическую, и то, что выдержка и охлаждение проводятся на воздухе.

14. Избегают планировать в изделиях и конструкциях сварные швы, неудобные для выполнения, например вертикальные, потолочные.

15. Обеспечивают минимальную погонную энергию, достижимую при высокой скорости сварки в сочетании с наименьшими поперечными сечениями швов.

16. Уменьшают число прихваток и их сечения.

17. Проковывают швы в холодном или горячем состоянии, что уменьшает внутренние напряжения и увеличивает прочность конструкции.

источник