Меню Рубрики

Выделение загрязнителей при сварке металлов

Расчет вредных веществ, выделяющихся при сварке

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Расчет вредных веществ, выделяющихся при сварке

В процессе проведения сварочных работ выделяются различные примеси, основными из которых являются твердые частицы и газы. Особенно сильное загрязнение воздуха вызывает сварка электродами с качественными покрытиями. Состав пыли и газов определяется содержанием покры­тия и составом свариваемого и электродного металла. Сварочная пыль представ­ляет собой смесь мельчайших частиц окислов металлов и минералов. Основными составляющими являются окислы железа (до 70 %), марганца, кремния, хрома, фтористые и другие соединения. Наиболее вредными веществами, входящими в состав покрытия и металла электрода, являются хром, марганец и фтористые со­единения. Воздух в рабочей зоне сварщика также загрязняется различными вредными газами: окислами азота, углерода, фтористым водородом и др.

При газовой резке металлов выделяется сварочный аэрозоль, окислы марганца, оксиды хрома, азота и углерода.

Удаление вредных газов и пыли из зоны сварки и резки, а также подача чистого воз­духа обычно осуществляется местной и общей вентиляцией. Объем подаваемого свежего воздуха должен быть не менее 30 м 3 /ч. Без вентиляции сварка внутри замкнутых пространств не разрешается. Поэтому, если часовой расход электродов менее 0,2 кг на 1 м 3 объема помещения и если концентрация сварочной пыли меньше пре­дельно допустимой, разрешается естественное проветривание помещений. Значения ПДК вредных веществ в воздухе рабочей зоны приведены в табл. 1.

Если сварка и газовая резка металлов производятся в одном цехе, то при определении валового выброса той или иной примеси необходимо суммировать все выделения в том и другом процессах.

Расчет вредных веществ, выделяющихся при сварке металлов, определяется из расчета расхода массы электродов.

Предельно допустимые концентрации вредных веществ, выделяющихся в воздух при сварке и резке металлов [1]

источник

Вентиляция сварочного цеха

Электросварочные процессы широко используются во многих отраслях промышленности при сборке различных изделий и конструкций.

В зависимости от габаритных размеров изделий сборка производится в многопролетных сборочно-сварочных цехах большого объема или в небольших помещениях. Цеха могут быть размещены как в отдельно стоящих одноэтажных зданиях, так и пролетах блокированных корпусов, где одновременно выполняются и другие операции.

Сборочно-сварочные цеха , как правило, характеризуются незначительными тепловыделениями — до 23 Вт на 1 м2 площади помещения. Выполняемые в них сварочные работы соответствуют категории работ средней тяжести

В настоящее время в промышленности наиболее распространены механизированная сварка в углекислом газе и ручная сварка штучными электродами. Также применяется автоматическая сварка под флюсом и в углекислом газе, порошковой проволокой и в инертных газах. В ряде отраслей промышленности используется контактная сварка — в основном точечная и стыковая.

Сварка мелких изделий производится на стационарных рабочих местах — на сварочных столах, размещенных обычно в кабинетах. Изготовление крупногабаритных изделий и их элементов выполняется, как правило, на специальных стендах, кантователях, кондукторах.

Электросварка сопровождается выделением сварочного аэрозоля (СА), содержащего мелкодисперсную твердую фазу и газы. Интенсивность выделений зависит от характеристики процесса, марки сварочных материалов и свариваемого металла. При этом определяющее влияние оказывает состав сварочного материала. СА содержит соединения железа, марганца, никеля, хрома, алюминия, меди и других веществ, а также газы (оксиды азота, оксид и двуоксид углерода, озон, фтористый водород).

При расчетах вентиляции ориентировочно можно принимать следующие средние часовые расходы сварочных материалов: для ручной сварки штучными электродами — до 1,5 кг; механизированной сварки — 2 кг; автоматической и роботизированной сварки — 4–6 кг. Количество вредных веществ, выделяющихся при различных сварочных процессах, представлено в таблице 1.

Принятые в настоящее время предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны сварочных цехов приведены в таблице 2.

При отсутствии правильно организованной вентиляции фактическая концентрация вредных веществ в зоне дыхания сварщиков можетзначительнопревышатьдопус-тимую. Следствием этого является достаточно высокий по сравнению с другими профессиями уровень профессиональных заболеваний сварщиков: болезнь органов дыхания (пневмокониоз), отравление марганцем, парами других металлов и сварочными газами.

Образующийся при электросварке аэрозоль конденсации характеризуется мелкой дисперсностью. Более 90 % частиц (в массовых долях) имеют скорость витания менее 0,1 м/с. Поэтому частицы аэрозоля легко следуют за воздушными потоками аналогично газам.

Выделение загрязнителей при сварке металлов

Способ сварки и марка сварочного материала Выделение загрязнителя, г/кг сварочного материала Прочих загрязнителей сварочного аэрозоля соединения марганца оксидов хрома фтористого водорода оксидов азота оксида углерода наименование кол-во Ручная дуговая сварка сталей электродами УОНИ-13/55 18,6 0,97 — 0,93 — — фториды 2,6 УОНИ- 13/65 7,5 1,41 — 1,17 — — фториды 0,8 АНО-4 6,0 0,69 — — — — — — АНО-6 16,3 1,95 — — — — — — АНО-11 22,4 0,87 — — — — — — ЭА-606/11 11,0 0,68 0,6 0,4 1,3 1,4 — — M33-III 40 — — — — — — — ЦТ-15 7,9 0,55 0,35 1,61 — — оксиды никеля 0,39 Ручная дуговая сварка чугуна ЦЧ-4 13,8 0,43 — 1,87 — ванадий 0,54 Ручная дуговая сварка меди ЩЗЧ-1 14,7 0,47 — 1,65 — медь 4,42 Вольфрам под гелием 20 — — — — — вольфрам 0,08 медь 2,1 СрМ-0,75 (проволока) Ручная сварка алюминия 17,1 0,44 — — — медь 15,4 ОЗА-1 38,1 — — — — — аэрозоль оксида 20 алюминия Проволока ЭП-245 12,4 0,54 — 0,36 — оксиды железа 11,5 ПП-106, ПП-108 12 0,7 — — 0,8 — оксиды железа 0,7 Проволока СВ-08Г2С 9,7 0,5 0,02 — 14 оксиды железа 7,48 СВ-Х19Н9Ф2СЗ 7 0,42 0,03 — — 14 оксиды железа 0,04 СВ-10Х20Н7СТ 8 0,45 0,03 — — — — — СВ-16Х16Н25М6 15 2 1 — — оксиды никеля — ЭП-245 12,4 0,61 — — — 3,2 — — СВ-О8ХГН2МТ 6,5 — 0,03 — 0,8 11 оксиды титана 0,4 медь 11 Проволока МНЖ-КГ5-1-02-0.2 18 0,3 — — — — оксиды никеля 0,8 КМЦ 8,8 0,6 — — — — медь 6 Проволока Д-20 10,9 0,09 — — — — оксиды алюминия 7,6 АМЦ 22,1 0,62 — — 2,45 — — 20 АМГ-6Т 50 0,25 — 0,33 — — 8,5 Алюминиевая 10 — — — 0,9 — — — Титановая 14,7 — — — — — оксиды титана 5 Неплавящиеся электроды 61 — — — — — оксиды алюминия 28 ОЗА-2/ак,ОЗА-1 38,5 — — — — — — 20 Сварка стали с флюсами ОСП-45 0,09 0,03 — 0,2 0,006 — прочие фториды 0,36 ФЦ-2, ФЦ-6, ФЦ-7 0,09 0,01 — 0,05 0,005 — соединения кремния 0,03 ФЦ-11, ФЦ-12 0,09 0,05 — 0,02 — — — 0,05 АН-22 0,12 0,01 — 0,02 — — — — АН-26, АН-30, АН-42 0,08 0,05 — 0,03 — — — — АН-60, АН-64 0,09 0,02 — — — — — — АН-348А 0,1 0,03 — 0,2 0,006 — прочие фториды 0,16 АНК-30 0,26 0,12 — 0,018 — — соединения кремния 0,05 ЖС-450 5,8 0,142 — 0,18 — 22,4 — — К-1 0,06 0,023 — 0,15 — 0,5 — — К-8 4,9 0,13 — 17,8 — — К-11 1,3 0,089 — 0,14 0,6 — — —

Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны сварочных цехов

Наименование вещества ПДК, мг/м3 Класс Опасности Агрегатное состояние (а — аэрозоль, п — пары) Примечание
содержание марганца в сварочных аэрозолях, масс.%
до 20 0,20 2 а
до 20-30 0,10 2 а
хроматы, бихроматы 0,01 1 а в пересчете на CrO3
оксид хрома (Cr2O3) 1,00 2 а
никель и его оксиды 0,05 1 а в пересчете Ni
оксид цинка 0,50 2 а
титан и его двуоксид 10,00 4 а
алюминий и его сплавы 2,00 2 а по Al
медь металлическая 1,00 2 а
вольфрам 6,00 3 а
двуоксид кремния аморфный в виде аэрозоля конденсации при содержании от 10 до 60 % 2,00 4 a
двуоксид азота 2,00 2 п
озон 0,10 1 п
оксид углерода 20,00 4 п
фтористый водород 0,05 1 п
соли фтористоводородной кислоты:
хорошо растворимые (NaF, KF) 0,20 2 а по HF
плохо растворимые (AIF2, NaAIFd) 0,50 2 а по HF

Источник выделения вредных веществ при электросварке — сварочная дуга — имеет незначительные размеры. Непосредственно вблизи ее концентрация вредных веществ очень высока. Далее конвективный поток над сварочной ванной и нагретым металлом (изделием) выносит СА в воздух помещения; при этом происходит интенсивное подмешивание окружающего воздуха.

По мере удаления от источника как по горизонтали, так и по вертикали концентрация вредных веществ резко уменьшается и на расстоянии соответственно 2 и 4 м приближается к общему фону загрязнения воздуха помещения.

Общий фон в вентилируемых цехах, как правило, не превышает уровня ПДК. Но в зоне дыхания сварщика, выполняющего ручные операции, содержание вредных компонентов сварочного аэрозоля значительно (в 7–10 раз) превосходит как фон, так и ПДК.

Обеспечение требуемой чистоты воздуха в рабочей зоне производственного помещения при правильной организации технологического процесса достигается путем рационального сочетания местной вытяжной, общеобменной, приточно-вытяжной вентиляции, эффективной очистки удаляемого воздуха.

Многообразие способов сварки, а также типов изготавливаемых изделий способствовало созданию большого количества конструкций местных вытяжных устройств. Они могут быть систематизированы в следующие группы: подъемно-поворотные самофиксирующиеся вытяжные устройства; переносные воздухоприемники с держателями; местные отсосы, встроенные в сварочное оборудование; местные отсосы, встроенные в оснастку рабочих мест автоматизированных и механизированных поточных линий; местные отсосы, обслуживающие роботизированные сварочные установки.

Подъемно-поворотные местные вытяжные устройства

Этот вид устройств включает воздухоприемник, фиксирующийся в любом пространственном положении посредством шарниров и тяг, и гибкий шланг диаметром 160 и 200 мм, присоединяющий воздухоприемник к магистральному воздуховоду централизованной вытяжной системы низкого или среднего давления либо к индивидуальному вентиляционному или фильтро-вентиляционному агрегату (рис.1, 2). Конструкция вытяжных устройств позволяет максимально приблизить воздухоприемник к источнику выделения вредностей и тем самым добиться высокой эффективности их улавливания (80–85 %).

Подъемно-поворотные вытяжные устройства являются наиболее универсальными и могут быть использованы при любых видах сварки как в нестационарных, так и в стационарных условиях.

Использование консолей, телескопических устройств и шарниров позволяет легко перемещать и устанавливать воздухоприемник в нужном положении. Один воздухоприемник может обслуживать зону сварки радиусом до 8 м от места крепления устройства.

Важным параметром, определяющим эксплуатационную пригодность передвижного вытяжного устройства, является зона эффективного улавливания, то есть область изделия, на которой будет осуществляться улавливание не менее 80 % сварочного аэрозоля без дополнительного перемещения воздухоприемника.

Исходя из условий выполнения технологического процесса, минимальный диаметр зоны эффективного улавливания принят равным 400 мм, что примерно соответствует длине шва, провариваемого одним электродом. Практика показывает, что такая зона эффективного улавливания приемлема и при механизированной сварке, поскольку через аналогичные интервалы времени сварщик прерывает сварку для проверки качества шва. Минимальная высота подвески воздухоприемника над изделием определяется удобством выполнения операций и может быть принята равной 400 мм.

Основные конструкции подъемно-поворотных устройств приведены на рисунках 1–3 . При ручной сварке в труднодоступных местах и закрытых емкостях, а также на крупногабаритных конструкциях используются переносные воздухоприемники с магнитными держателями.

При проведении сварочных работ в труднодоступных местах (цистерны, баки, емкости с горловинами малой площади и т. п.) используются воздухоприемники с магнитными держателями. Указанными воздухоприемниками (рис. 4) снабжены устройства «Спрут» и «Лань».

Устройство «Спрут» состоит из одинарной или двойной консольной балки, на которой крепится гибкий шланг диаметром 160 мм с воздухоприемником.

Устройство «Лань» состоит из вентилятора, гибкого шланга и воздухоприемника, который можно закреплять на металлической поверхности в непосредственной близости от источника выделения вредностей.

Одним из направлений в создании местной вытяжной вентиляции в сварочном производстве является оснащение сварочного оборудования местными отсосами . Широко распространены и горелки для механизированной сварки в углекислом газе. Имеются решения, в которых отсос выполнен в виде отдельного элемента — воздухопри-емной насадки, пристроенной к существующей горелке. Другим вариантом являются специальные конструкции горелок со встроенным воздухоприемным устройством и совмещенными или раздельными вентиляционными и технологическими коммуникациями. Устройство (рис. 4) состоит из воздухоприемника с кольцевым или щелевым всасывающим отверстием, расположенным над срезом сопла для подачи защитного газа, и гибкого шланга, соединяющего воздухоприемник с индивидуальным побудителем тяги повышенного вакуума (высоконапорный вентилятор, воздухоструйный эжектор или фильтровентиляционный агрегат) или с коллектором централизованной высоковакуумной системы. Необходимое разрежение в системе должно составлять 18…20 кПа.

Разработано большое количество конструкций полуавтоматических горелок, оснащенных местными отсосами. По принципиальной схеме они, как правило, мало отличаются друг от друга, но имеют некоторые конструктивные особенности, учитывающие специфику того или иного вида сварочного производства.

Достоинством горелок, оснащенных местными отсосами, является то, что они обеспечивают улавливание СА, при этом не требуется специально перемещать отсосы в процессе сварки. Наиболее они эффективны при сварке горизонтальных швов, в случае вертикальных швов эффективность улавливания значительно снижается. К недостаткам горелок относится то, что из-за расположения воздухоприемника в непосредственной близости от зоны сварки возникает необходимость увеличения расхода защитного газа.

В ряде конструкций возрастает масса горелки, а следовательно, и нагрузка на руку сварщика, что ограничивает сферу их применения.

Использование полуавтоматических горелок со встроенными местными отсосами целесообразно при сварке в труднодоступных местах и крупногабаритных конструкций, а также при сварке швов значительной протяженности, когда другие виды местных вытяжных устройств использованы быть не могут.

Известен ряд опытных конструкций сварочных автоматов, оснащенных местными отсосами.

Малогабаритные воздухоприемники, встроенные в сварочное оборудование, оснащенные гибкими шлангами, имеют значительное гидродинамическое сопротивление и должны подключаться к высоковакуумным системам.

При изготовлении сварочных изделий раскрой металла осуществляется машинами газовой или плазменной резки. При сборке изделий используется также ручная резка. Процессы тепловой резки сопровождаются выделением мелкодисперсной пыли и газов. Частицы пыли менее 5 мкм составляют 98 %. Количество выделяющихся вредных веществ и их состав зависят от вида разрезаемого металла и режима резки (табл. 3).

Выделение загрязнителей при газовой и плазменной резке металлов

Способ резки, вид и толщина металла Выделение на м реза, г/м за 1 час работы, г/ч, в том числе оксидов Аэрозоля, всего в Mg Cr Ni Al CO NOx г/м г/ч г/м г/ч г/м г/ч г/м г/ч г/м г/ч г/м г/ч г/м г/ч Резка газовая стали углеродистой толщиной 5 мм 2,25 74 0,07 2,3 1,5 50 1,2 40 10 мм 4,5 130 0,13 3,8 2,2 6,3 2,2 65 20 мм 9 200 0,27 6 2,3 65 2,4 — Резка газовая стали делигированной толщиной 5 мм 2,5 80 0,12 4 1,3 43 1 35 10 мм 5 150 0,23 6,7 1,9 55 1,5 43 20 мм 10 225 0,47 10,5 2,6 57 2 45 Резка газовая стали марганцовистой толщиной 5 мм 2,5 80 0,6 20 1,4 46 1,1 36 10 мм 5 140 1,6 35 2 58 1,6 47 20 мм 10 220 2,4 55 2,7 60 2,2 50 Резка газовая сплавов титана толщиной 4 мм 5 140 4,7 130 0,6 17 0,2 6 12 мм 15 315 14 280 1,5 32 0,6 13 20 мм 25 390 22 345 2,5 38 1 16 30 мм 35 350 33 335 2,7 — 1,5 — Резка плазменная стали углеродистой толщиной 10 мм 40 810 0,12 24 1,4 7 Резка плазменная стали низколегированной толщиной 14 мм 6 790 0,18 24 2 265 10 130 20 мм 10 960 0,3 29 2,5 — 14 — Резка плазменная стали легированной толщиной 5 мм 3 990 0,14 46 1.5 — 6 200 10 мм 5 1370 0,24 66 1.9 470 10 — 20 мм 12 1600 0,58 77 2.1 — 13 — Резка плазменная стали марганцовистой толщиной 5 мм 4 790 0,72 140 1,4 — 7 128 10 мм 6 765 1,16 1,50 2 265 10 — 20 мм 10 920 1,73 170 2,5 — 13 — Резка сплавов алюминия толщиной 8 мм 3 — 2,5 — 0,5 — 2 612 20 мм 4 480 3,5 440 0,6 75 3 — 80 мм 6,5 — 8 — 1 — 9 — Резка плазменная сплавов титана толщиной 10 мм 3 455 2,7 425 0,4 — 11 160 20 мм 7 645 6,4 515 0,5 40 15 — 30 мм 12,5 680 12 640 0,6 — 19 —

Распространение образующегося аэрозоля при резке определяет струя газа, которая подхватывает и со значительной скоростью несет пыль и газы. Это обстоятельство необходимо учитывать при выборе рационального способа локализации вредных выделений.

При раскрое листового металла на столах основная схема улавливания аэрозоля включает отсос загрязненного воздуха из-под листа. На рис. 5 показан стол для ручной резки, который включает емкий пылегазоприемник — короб, разделенный на секции длиной 1,0–1,5 м. В стенке каждой секции имеется решетка, через которую полость секции сообщается с ответвлением сборочного вытяжного канала, проходящего вдоль стола и присоединенного к вытяжному вентилятору. Каждое ответвление снабжено дросселем. С целью сокращения объема удаляемого воздуха с помощью дросселя включается только одна рабочая секция.

Для машинной резки на поточных линиях разработан ряд конструкций местных вытяжных устройств от раскроечных рам, в которых включение рабочих секций осуществляется автоматически, синхронно с движением машины и резака.

Удельный объем воздуха, удаляемого с 1 м2 площади раскроечной рамы, по результатам экспериментальных данных может быть принят следующим: 2500 м3/ч.м2 — при газовой резке; 4000 м3/ч.м2 — при плазменной резке. Воздух, удаляемый местными вытяжными устройствами при тепловой резке металлов, перед выбросом в атмосферу следует подвергать очистке.

Обычно применяется двухступенчатая очистка : первая ступень — циклонный аппарат типа ВЗП, вторая ступень — электростатический фильтр или механический фильтр с импульсной продувкой.

Отзывы о компании ООО «ИНТЕХ»:

Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

© 2003-2019 ИНТЕХ — Вентиляция и кондиционирование. Контакты

источник

Вячеслав Лупачев
Безопасность труда при производстве сварочных работ

1.4. Вредные вещества, образующиеся при сварке

Действие вредных веществ. При производстве сварочных работ воздух рабочей зоны может быть загрязнен вредными веществами, которые образуются в результате технологического процесса сварки. Такие вещества находятся в воздухе в виде пыли, аэрозолей и газов и негативно влияют на организм человека. В зависимости от токсичности и концентрации в воздухе они могут быть причиной отравлений или хронических профессиональных заболеваний.

По токсичному действию вредные вещества разделяют на:

поражающие кровь, которые взаимодействуют с гемоглобином крови и тормозят его способность к присоединению кислорода (оксид углерода и др.);

поражающие нервную систему, которые вызывают ее возбуждение, истощение, разрушение нервных тканей (ацетилен, спирты, сероводород и др.);

поражающие органы дыхания, воздействующие на верхние дыхательные пути и легкие (оксиды азота, озон, аммиак, серный газ, пары кислот и многие другие вещества);

обжигающие и поражающие кожу и слизистые оболочки (серная и соляная кислоты, щелочи и др.);

поражающие печень, действие которых сопровождается изменением и воспалением тканей печени (цинк в составе сварочных аэрозолей, спирты, дихлорэтан, четыреххлористый углерод и др.);

аллергены, изменяющие реактивную способность организма (никель в составе сварочных аэрозолей, алкалоиды и прочие вещества);

канцерогены, способствующие образованию злокачественных опухолей (шестивалентный хром в составе сварочных аэрозолей и др.);

мутагены, влияющие на генетический аппарат клеток (соединения ртути, этилен и др.).

Концентрацию вредных веществ в воздухе рабочей зоны регламентирует ГОСТ 12.1.005 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны». В соответствии с этим стандартом по степени действия на организм вредные вещества разделяют на четыре класса опасности:

1) чрезвычайно опасные – имеют предельно допустимую концентрацию (ПДК) в воздухе меньше 0,1 мг/м 3 (смертельная концентрация в воздухе меньше чем 500 мг/м 3 );

2) высоко опасные – ПДК составляет 0,1–1,0 мг/м 3 (смертельная концентрация в воздухе 500-5000 мг/м 3 );

3) умеренно опасные – ПДК равняется 1,1—10 мг/м 3 (смертельная концентрация в воздухе 5000—50 000 мг/м 3 ;

4) мало опасные – ПДК превышает 10 мг/м 3 (смертельная концентрация в воздухе больше 50 000 мг/м 3 .

Если в воздухе присутствуют несколько веществ (я) однонаправленного действия, то они производят суммарный токсичный эффект и качество воздуха должно соответствовать указанным нормативам при условии, что где С1, С2…., Сп – концентрация веществ 1, 2…, n; ПДК1; ПДК2…, ПДКn – предельно допустимая концентрация веществ 1, 2…, я соответственно.

ПДК вредных веществ, наиболее часто встречающихся в воздухе рабочей зоны сварочных цехов, представлены в табл. 1.4.

До недавнего времени ПДК химических веществ оценивали как максимально разовые. Превышение их даже на протяжении короткого времени запрещалось. В последнее время для веществ (медь, свинец, ртуть, фториды и др.), которые имеют кумулятивные свойства (способность накапливаться в организме), для контроля введена вторая величина – среднедопустимая ПДК. Например, для фторида натрия среднедопустимая ПДК составляет 0,2 мг/м 3 , что значительно ниже, чем его максимально разовая ПДК, которая составляет 1 мг/м 3 .

Пыль. Пыль может присутствовать в воздухе рабочей зоны в виде аэрозоля мелких твердых или жидких частиц, которые движутся под действием воздушных потоков. При определенных условиях аэрозоли оседают, и воздух очищается. Твердые частицы, которые осели из воздуха на поверхность, называют аэрогелью.

Таблица 1.4. Предельно допустимые концентрации наиболее часто встречающихся вредных веществ в воздухе рабочей зоны сварочных цехов

Примечание. 1. ПДК для атмосферного воздуха, указанные в числителе, являются максимально разовыми, а в знаменателе – среднесуточными.

2. П – пары и (или) газы; А – аэрозоли.

* – Среднесменные величины ПДК.

Пыль обычно содержит различные соли, обладающие гигроскопичностью и способностью поглощать атмосферную влагу.

Пыль с размерами частиц от 0,01 до 10 мкм благодаря аэродинамическим силам, созданным воздушным потоком, продолжительное время может находиться в виде аэрозоля в воздухе во взвешенном состоянии.

Дисперсный состав характеризует пылевые частицы по размеру и в значительной мере обусловливает свойства пыли. Экспериментальные исследования оседания аэрозолей в дыхательной системе человека показали, что частицы аэрозолей больше 10 мкм полностью оседают в пустотах носа, а при дыхании через рот не проникают дальше верхних бронхов. В носу и в бронхиолах также задерживается большинство частиц с размерами больше 5 мкм и незначительное количество частиц меньше 5 мкм и только очень небольшое их количество проникает в альвеолы легких.

Максимальную проникающую способность имеют частички диаметром 0,8–1,6 мкм, которые оседают в тонких бронхиолах и альвеолах легких. С уменьшением размеров частиц процент их осаждения в альвеолах снижается. Так, около 80 % частиц диаметром 0,2–0,3 мкм выдыхаются из легких назад в воздух.

Частицы аэрозолей меньше 0,2 мкм также оседают в бронхах и легких, причем их оседание увеличивается при уменьшении размеров, вследствие броуновского движения.

Для организма человека наиболее опасная пыль (аэрозоль), состоящая из частичек размером 0,015 мкм, так как они плохо задерживаются слизистой оболочкой верхних дыхательных путей и проникают далеко в легочную ткань.

Форма частиц пыли также имеет значение. Частицы зазубренной колючей формы представляют большую опасность, чем сферические, так как повреждают кожу, легочные ткани и слизистую оболочку, давая возможность просачиваться в организм инфекционным микроорганизмам, которые сопровождают пыль или находятся в воздухе. Это приводит к атрофичным, гипертрофическим, гнойным, язвенным и другим изменениям слизистой оболочки, бронхов, легких, кожи, которые ведут к катару верхних дыхательных путей, язвенному заболеванию носовой перепонки, бронхитам, пневмонии, конъюнктивиту, дерматитам и к другим заболеваниям. Продолжительное вдыхание пыли, которая попадает в легкие, вызывает пневмокониоз (силикоз, сидероз).

Пылевые частицы способны воспринимать электрический заряд как непосредственно из газовой среды (прямая адсорбция ионов из воздуха), так и в результате трения частиц пыли между собой или непосредственного контакта с какой-нибудь заряженной поверхностью.

Сварочные аэрозоли получают электрический заряд еще в зоне дуги. Установлено, что из общего количества пылевых частиц, которые заносятся с воздухом в дыхательные пути, задерживаются слизистой оболочкой преимущественно заряженные частицы.

Наиболее распространенными и вредными химическими веществами, определяющими токсичность аэрозолей, которые образуются при сварке легированных сталей, являются соединения марганца, хрома, фтора и др.

Марганец, который во время сварки попадает в организм через дыхательные пути, имеет свойство откладываться в мозгу и печени. Его соединения являются сильным ядом, который действует на центральную нервную систему. Отравление марганцем имеет хронический характер и может приводить к развитию профессиональной марганцевой пневмонии. Заболевание начинается со слабости в ногах, дрожания рук, изжоги, сонливости. Затем может быть затруднение речи, возникновение боли в конечностях, поражение центральной нервной системы.

Хром, как легирующая добавка в составе сварочных материалов, попадает в организм через дыхательные пути и начинает действовать уже в верхних дыхательных путях. Под влиянием хрома могут развиваться язвы верхних дыхательных путей, возможны пневмонии. Шестивалентный хром, как канцерогенное вещество, создает риск развития отдаленных во времени онкологических заболеваний.

Фтор в форме разных химических соединений действует на сварщиков при применении сварочных материалов с шлакообразующей основой фтористо-кальциевого вида. Под влиянием фтористых соединений развиваются дерматиты, иногда язвы. Поражение дыхательных путей служит причиной бронхитов, встречаются трудные случаи пневмонии. Хроническое отравление наблюдается после продолжительного влияния малых концентраций фтора. Фтор способствует выводу из организма кальция, что замедляет его обмен в костной ткани и увеличивает ломкость костей. Отмечаются также изменения в бронхах и легких.

Основным способом устранения вредного влияния сварочных аэрозолей на организм человека является применение вентиляции.

Другой, не менее важный способ оздоровления воздушной среды – технологический, который заключается в усовершенствовании сварочных технологий и материалов, а также в выборе соответствующих режимов сварки.

Образование сварочных аэрозолей (СА). При дуговой сварке, вследствие влияния на основной металл и материал электрода тепла дуги, возникает их плавление и частичное выпаривание. Пары материалов электрода и сварочной ванны, которые образуются при высокой температуре, выделяются в воздух окружающей среды. Воздух имеет более низкую температуру, поэтому пары, конденсируются в мелкодисперсные частицы, которые за счет аэродинамических сил продолжительное время могут находиться во взвешенном состоянии, образуя СА. Химический состав и интенсивность выделения СА зависят от характера переноса электродного металла в сварочную ванну.

Различают два механизма образования СА: выпаривание-конденсация-окисление (В – К—О) и выпаривание-окисление-конденсация (В – О – К). Участие каждого из них в образовании СА зависит от способа сварки и состава защитного газа. Уменьшение окислительного потенциала защитного газа оказывает содействие снижению роли второго механизма в образовании СА.

В процессе сварки в СА могут переходить элементы (железо, марганец, кремний, кальций, калий, магний, натрий, титан, алюминий, хром, никель, фтор и др.), которые входят в состав электродов, флюсов, прутков и других сварочных материалов и основного металла.

В результате окисления и конденсации этих элементов образуются твердые частички сложного вида в форме оксидов.

Дисперсность (размер) частичек СА колеблется в границах от тысячных частей до нескольких микрометров. Основное количество частичек имеет размер меньше 1 мкм. Частички СА могут принимать различную форму, а более мелкие частички (размером от сотых и десятых долей мкм) склонны к образованию цепочек.

Большинство мелких частичек состоит из ядра и оболочки. Ядро содержит соединения железа и марганца, а оболочка вмещает соединения кремния, калия и натрия (при наличии этих веществ в составе покрытых электродов). Толщина оболочки зависит от температуры, окислительного потенциала атмосферы дуги и увеличивается с количеством содержания указанных элементов в электроде.

Неоднородность структуры СА характерна для аэрозолей конденсации сложного вида. Данные о химическом составе и строении частичек СА важны для понимания природы их биологической активности и токсичности.

Интенсивность образования СА определяется скоростью плавления электродного материала и зависит от сварочного тока и напряжения дуги, от состава сварочных материалов, основного металла и защитной среды, а также от положения шва в пространстве и техники сварки.

Установлено, что при сварке покрытыми электродами в СА переходит 1–3 % от массы электрода, а в случае сварки плавящимся электродом в защитных газах – 0,5–2,0 % от массы сварочного провода. Химический состав СА на 80–90 % обусловлен составом сварочных материалов. Характеристика некоторых марок покрытых сварочных электродов по выделению вредных веществ представлена в табл. 1.5.

Таблица 1.5. Характеристика некоторых марок электродов по выделению вредных веществ

Примечание. 1. Буквами обозначены виды покрытия: Ц – целлюлозное; 3 – рутиловое; Б – основное; П – прочее.

Вместе с пылью в производственной среде распространяются и вредные газы, которые при определенных условиях могут привести к внезапному отравлению людей. Как правило, они не определяются визуально и во многих случаях не имеют запаха, поэтому являются опасными.

Некоторые довольно распространенные в производственном процессе газы имеют плотность, большую плотности воздуха и накапливаются в низких участках помещений (подвалах, шахтах и др.), достигая значительных концентраций. Это очень опасно, так как может привести к отравлению, а в случае накопления горючего или взрывного газа – к взрыву или пожару.

В качестве защитных газов при дуговой сварке применяют углекислый газ (CO2) и аргон (Аг), при газовой сварке используют ацетилен (С2Н2).

В процессе сварки образуются оксид углерода (СО), оксиды азота (NO, NO2), озон (03), фтористый водород (HF), тетрафтористий кремний (SiF4) и другие соединения.

Образование газов при сварке. Во время сварочного процесса в воздух рабочей зоны кроме сварочных аэрозолей поступают смеси газов (CO2, СО, HF и др.), которые образуются при термической диссоциации газошлакообразующих компонентов, входящих в состав сварочных материалов.

Смеси газов образуются также в результате фотохимического действия ультрафиолетового излучения сварочной дуги на молекулы газов защитной атмосферы и окружающего дугу воздуха (NO, NO2, O3).

При сварке в защитных газах состав образующихся газообразных веществ определяется составом защитной смеси.

Основной причиной образования угарного газа (монооксида углерода) СО при сварке в CO2 является диссоциация последнего при высокой температуре сварочной дуги:

При выходе из зоны высоких температур монооксид углерода снова соединяется с кислородом и озоном, превращаясь в диоксид углерода:

Монооксид углерода может образовываться также в результате термической диссоциации газообразующих карбонатов в составе шлакообразующих компонентов сварочных материалов.

Монооксид азота образуется при высокотемпературном окислении азота воздуха, который окружает дугу:

Под влиянием ультрафиолетового излучения дуги монооксид азота окисляется кислородом воздуха до отравляющего диоксида азота:

При сварке в CO2 дуга горит в атмосфере этого газа, поэтому интенсивность образования оксидов азота очень небольшая по сравнению с монооксидом углерода.

Озон образуется из кислорода воздуха и защитного газа под действием ультрафиолетового излучения дуги:

В начальный момент сварки концентрация озона высокая, но потом он реагирует с оксидом азота, образуя диоксид азота и кислород:

При использовании сварочных материалов, в состав которых входит фтористый кальций или другие компоненты, которые содержат фтор, в воздухе наблюдается наличие фтористого водорода и тетрафтористого кремния.

Фтористый водород образуется в газовой среде при температуре выше 2000 °С в результате взаимодействия фтористого кальция с водяным паром:

Потом при взаимодействии фтористого водорода с диоксидом кремния, присутствующим в составе сварочных материалов, образуются газообразный тетрафтористий кремний:

При наличии в составе шлакообразующей основы сварочных материалов диоксида титана в воздухе появляется газообразный тетрафтористый титан TiF4.

При сварке титана под флюсами, которые содержат фтор (например, при содержании во флюсе фтористого лантана), также образуется тетрафтористый титан:

Токсичность газов. Углекислый газ (диоксид углерода) CO2 – наркотический газ, поражает слизистые оболочки, вызывает шум в ушах и общую слабость организма.

Углекислый газ не горит и не поддерживает горение.

CO2 в полтора раза тяжелее воздуха, поэтому может накапливаться в нижних участках помещения, снижать уровень необходимого для дыхания кислорода в зоне дыхания и привести к отравлению человека.

В среде чистого CO2 наступает мгновенная смерть вследствие паралича органов дыхания, а концентрация выше 60 % – очень опасная. Значение ПДК – 9000 мг/м 3 . Превышение ПДК имеет место в закрытых невентилируемых помещениях. Симптомы отравления: вялость, дурнота. Воздух, который выдыхается, содержит 4–5 % CO2.

Большую опасность для человека представляет угарный газ (монооксид углерода) СО. Это типичный представитель производственных, транспортных и бытовых загрязнений воздуха. Во время сварочных процессов он может накапливаться в недостаточно вентилируемых помещениях в значительных концентрациях. В соответствии с санитарными нормами ПДК СО составляет 20 мг/м 3 . Угарный газ имеет специфический запах.

Отравляющее действие СО базируется на способности создавать с гемоглобином крови устойчивое комплексное соединение – карбоксигемоглобин, которое превышает больше чем в 200 раз способность гемоглобина присоединять кислород и этим препятствует нормальному газообмену в крови. Поэтому 0,1 % СО в воздухе связывает такое же количество гемоглобина (50 %), что и кислород воздуха.

Присутствие СО приводит к кислородному голоданию организма, которое при значительных концентрациях СО в воздухе и продолжительном времени может послужить причиной серьезных заболеваний или смерти. Вследствие кислородного голодания нарушается функция центральной нервной системы. Если пострадавшего вывести на свежий воздух, оксид углерода будет выделяться из организма с воздухом, который выдыхается.

Симптомы острого отравления в легких случаях такие: учащенное сердцебиение и ощущение давления в висках, головная боль, сжатие в груди, общая слабость, позывы к рвоте. В тяжелых случаях отравлений наблюдается потеря способности к свободным движениям (приверженность к определенному положению), затемненное сознание, вплоть до его полной потери. Это может сопровождаться судорогами, прикусыванием языка, невольным мочеиспусканием. Пульс частый, неправильный, тоны сердца глухие, дыхание поверхностное. Имеют место психическое возбуждение, слуховые и зрительные галлюцинации, нарушение цветного видения.

Для предупреждения острого отравления важно своевременно распознать первые признаки отравления, которое может иметь и хронический характер. Хроническая интоксикация оксидом углерода характеризуется постепенными изменениями в нервной системе.

Оксиды азота (NO, NO2) могут вызвать острое отравление. Симптомы: сначала небольшое раздражение слизистых оболочек глаз, носа, незначительный кашель, головная боль. Проявления быстро стихают, могут пройти незамеченными. Спустя некоторое время на фоне нормального состояния внезапно возникает отек легких. При хронических отравлениях отмечаются боль в груди, кашель, боль в области сердца, головная боль. Острые отравления оксидами азота во время выполнения сварки в замкнутых помещениях могут вызывать отек легких.

Озон (03) оказывает на организм преимущественно раздражающее действие. При остром отравлении отмечается сухость во рту, раздражение слизистых оболочек глаз и носа, боль за грудиной, кашель. Более высокая концентрация O3 (около 20 мг/м 3 ) может вызывать умопомрачение, чувство сильной усталости, сердечно-сосудистые нарушения.

Работающие в условиях постоянного действия озона жалуются на головные боли, повышенную раздражительность, плаксивость, снижение памяти, плохой сон; отмечаются вегетативные нарушения (склонность к брадикардии и гипотонии, приглушение тонов сердца); наблюдаются явления раздражения верхних дыхательных путей, хронический бронхит, иногда астматического характера; возможно развитие пневмосклероза.

Фтористый водород (HF) совершает раздражающее действие вследствие образования в организме токсичного фтора-иона; поражает опорно-двигательный аппарат, является протоплазматичным и ферментным ядом многоразового действия; нарушает процессы минерального обмена.

Острое отравление фтористым водородом характеризуется резким раздражением глаз и верхних дыхательных путей, язвенным конъюнктивитом, опуханием носа, язвами слизистых оболочек глаз, носа, ротовой полости, которые тяжело заживляются, носовыми кровотечениями, кашлем, бронхитом, отеком легких и другими проявлениями.

При хроническом отравлении HF возникают ранние признаки нарушения чувствительности зубов и десен, зазубренность и стертость зубов, парадонтозы, жгучие боли и опухание носа, астматический бронхит и прочие заболевания; в выраженных случаях – хроническая пневмония, бронхиальная астма и др.

Ацетилен2Н2) – наркотическое вещество, но причиной отравления является не сам ацетилен, а присутствующие в нем примеси: фосфористый водород (РН3), оксид углерода (СО), диоксид азота (NO2), аммиак (NH3) и сероводород (H2S). Случаи отравления ацетиленом бывают очень редко.

Ацетилен воспринимается в легких кровью, но в отличие от оксида углерода не осуществляет в ней прямых изменений. Его влияние главным образом испытывает нервная система. В результате продолжительного действия наступает поражение органов дыхания, потом смерть.

Аргон (Ar) – инертный газ, не усваивается организмом, но при попадании в дыхательные пути, что возможно при аргоно-дуговой сварке, из-за более высокой плотности, чем воздух, может накапливаться в нижней части легких. Это создает трудности при его выдохе из легких. Вследствие этого присутствие нетоксичного аргона в легких приводит к уменьшению в них необходимого для дыхания кислорода, что может привести к удушью со смертельным исходом.

Практика показала, что для полного удаления аргона из легких сварщику приходится низко наклоняться, что оказывает благоприятное содействие истечению аргона при выдохе.

Отравления газами. Случаи отравления комплексом газов были зафиксированы в практике кислородно-ацетиленовой сварки и резки в небольших недостаточно вентилируемых помещениях и внутри котлов, трубопроводов и т. п.

Под действием наркотического ацетилена на нервную систему сварщик терял сознание, получал отравление оксидом углерода, а действие оксидов азота приводило к отеку легких. В основном это служило причиной смерти.

Следует отметить, что на организм сварщика, работающего в запыленном и загазованном помещении, также влияет интенсивность труда и параметры микроклимата. При этом усиленная дыхательная деятельность приводит к поглощению повышенных доз воздуха, а вместе с ним вредных веществ; высокая температура воздуха усиливает вредное действие отравляющих веществ на организм человека.

источник

Adblock
detector