Меню Рубрики

Вывод о способах сварки

ЗАКЛЮЧЕНИЕ

Сварка обладает значительным преимуществом по сравнению с ранее применявшимся в строительстве соединением частей конструкций при помощи клепки: уменьшается расход металла, повышается производительность труда, сокращаются сроки строительства и его стоимость.

Рассмотрена классификация способов сварки по физическим признакам. Основным физическим признаком сварки является вид энергии, используемой для получения сварного соединения. По физическим признакам все виды сварки делятся на три класса: термический, термомеханический и механический. Самым распространенным способом сварки плавлением является электрическая дуговая сварка. Она широко применяется в производстве металлоконструкций и изделий из различных металлов и сплавов малой и средней толщины, удобна при выполнении коротких и криволинейных швов в любых пространственных положениях, а также при наложении швов в труднодоступных местах. Ручная сварка остается незаменимой при монтажных и ремонтных работах в стационарных и полевых условиях, и при сборке конструкций сложной формы. Наиболее распространенным способом сварки давлением является контактная сварка. Контактная сварка находит широкое применение в промышленности, что обусловлено следующими её преимуществами: высокой производительностью; возможностью механизации процесса; возможностью соединения различных металлов и сплавов, а также разнородных металлов; минимальной деформацией свариваемых изделий.

Однако, наиболее перспективной с точки зрения качества сварного шва, экономичности, безопасности работы, сферы применения и условий эксплуатации, возможности автоматизации и набора материалов, которые можно сваривать, наиболее перспективна лазерная сварка. Причем число видов свариваемых металлов очень велико.

Процесс сварки легко поддается автоматизации, участие человека непосредственно в процессе сведено к минимуму, а значит влияние человеческого факта на качество изделия очень невелико.

источник

Сварка под флюсом

Принцип сварки: электрическая дуга горит между плавящимся электродом и деталью под зернистым сыпучим материалом, называемым сварочным флюсом полностью закрывающим дугу и сварочную ванну от взаимодействия с воздухом (рисунок 5).

Рисунок 5 — Схема сварки под флюсом

Под действием тепла дуги расплавляются электродная проволока и основной металл, а также часть флюса. В зоне сварки образуется полость, заполненная парами металла, флюса и газами. Газовая полость ограничена в верхней части оболочкой расплавленного флюса. Расплавленный флюс, окружая газовую полость, защищает дугу и расплавленный металл в зоне сварки от вредного воздействия окружающей среды, осуществляет металлургическую обработку металла в сварочной ванне. По мере удаления сварочной дуги расплавленный флюс, прореагировавший с расплавленным металлом, затвердевает, образуя на шве шлаковую корку. После прекращения процесса сварки и охлаждения металла шлаковая корка легко отделяется от металла шва. Неизрасходованная часть флюса собирается пневматическим устройством во флюсоаппарат и используется в дальнейшем при сварке.

· Области применения; сварка в цеховых и монтажных условиях, сварка металлов от 1,5 до 150 мм и более; сварка всех металлов и сплавов, разнородных металлов;

· Материалы: конструкционные стали общего назначения, котельные стали, высоколегированные стали, никель и никелевые сплавы;

· Область применения: сварка и наплавка в тяжелом машиностроении, химическая промышленность, транспорт и судостроение;

· Параметры: сила тока 200-2000А, напряжение 20-50В, скорость сварки 15-300 см/мин.

Преимущества сварки под флюсом:

ь Повышенная производительность;

ь Минимальные потери электродного металла (не более 2%);

ь Максимально надежная защита зоны сварки;

ь Минимальная чувствительность к образованию оксидов;

ь Малые затраты на подготовку кадров;

ь Мелкочешуйчатая поверхность металла шва в связи с высокой стабильностью процесса горения дуги;

ь Не требуется защитных приспособлений от светового излучения, поскольку дуга горит под слоем флюса;

ь Низкая скорость охлаждения металла обеспечивает высокие показатели механических свойств металла шва.

Недостатки сварки под флюсом:

Ш Трудозатраты с производством, хранением и подготовкой сварочных флюсов;

Ш Трудности корректировки положения дуги относительно кромок свариваемого изделия;

Ш Неблагоприятное воздействие на оператора;

Ш Нет возможности выполнять сварку во всех пространственных положениях без специального оборудования. [2]

Вывод о выборе способа сварки

Рациональное применение того или иного способа характеризуется технологичностью, производительностью экономичностью и экологичностью процесса сварки. Кроме того, выбранный способ сварки должен удовлетворять наличию требуемого оборудования на предприятии. Так ручная дуговая сварка плавящимся электродом имеет низкую производительность. Дуговая под флюсом — имеет высокую производительность, т.к. может быть автоматизирована, но у этого способа существуют трудности при сварке небольших толщин, т.к., хорошая тепловая изоляция сварочной дуги, повышает давление сварочной дуги, способствует более глубокому проплавлению свариваемого металла.

Наибольшее распространение получили механизированные и автоматизированные дуговые способы сварки в защитном газе плавящимся электродом. Сварка плавящимся электродом характеризуется универсальностью процесса, возможностью сварки во всех пространственных положениях, а также при сварке в защитном газе объем основного металла участвующего в формировании сварного шва меньше чем при сварке под флюсом.

Для сварки хребтовой балки из стали 09Г2С используем автоматическую сварку под флюсом, потому что она имеет ряд преимуществ:

1. высокая производительность;

2. высокое качество сварного шва;

3. экономия материалов и электроэнергии.

Она позволяет значительно увеличить мощность сварочной дуги, что позволяет за один проход сваривать стальные листы толщиной до 15 мм. Горение дуги под слоем флюса позволяет защитить свариваемый металл от окисления. Такая сварка может быть полностью автоматизирована. При этом перемещение сварочной дуги (всего аппарата относительно заготовки, перемещение проволоки в зону дуги) обеспечивается специальными следящими системами. Сварные швы элемента конструкций длиной более одного метра целесообразно использовать автоматическую сварку.

Эскиз разделки кромок, типа соединения со всеми конструктивными элементами

Ручная дуговая сварка при постановке прихваток

источник

4.4 Вывод о выборе способа сварки

Рациональное применение того или иного способа характеризуется технологичностью, производительностью экономичностью и экологичностью процесса сварки. Кроме того, выбранный способ сварки должен удовлетворять наличию требуемого оборудования на предприятии. Так ручная дуговая сварка плавящимся электродом имеет низкую производительность. Дуговая под флюсом — имеет высокую производительность, т.к. может быть автоматизирована, но у этого способа существуют трудности при сварке небольших толщин, т.к., хорошая тепловая изоляция сварочной дуги, повышает давление сварочной дуги, способствует более глубокому проплавлению свариваемого металла.

Наибольшее распространение получили механизированные и автоматизированные дуговые способы сварки в защитном газе плавящимся электродом. Сварка плавящимся электродом характеризуется универсальностью процесса, возможностью сварки во всех пространственных положениях, а также при сварке в защитном газе объем основного металла участвующего в формировании сварного шва меньше чем при сварке под флюсом.

Для сварки хребтовой балки из стали 09Г2С используем автоматическую сварку под флюсом, потому что она имеет ряд преимуществ:

1. высокая производительность;

2. высокое качество сварного шва;

3. экономия материалов и электроэнергии.

Она позволяет значительно увеличить мощность сварочной дуги, что позволяет за один проход сваривать стальные листы толщиной до 15 мм. Горение дуги под слоем флюса позволяет защитить свариваемый металл от окисления. Такая сварка может быть полностью автоматизирована. При этом перемещение сварочной дуги (всего аппарата относительно заготовки, перемещение проволоки в зону дуги) обеспечивается специальными следящими системами. Сварные швы элемента конструкций длиной более одного метра целесообразно использовать автоматическую сварку.

Эскиз разделки кромок, типа соединения со всеми конструктивными элементами

Ручная дуговая сварка при постановке прихваток

Сварка под флюсом основного шва

Проволока Св-08ГА Флюс АН-348А

5. Выбор сварочных материалов

Прихватку выполняем с помощью ручной дуговой сварки. Для стали 09Г2С применяют электроды Э50А или Э55А. Это обеспечивает получение металла шва с достаточной стойкостью против кристаллизационных трещин и требуемыми прочностными и пластическими свойствами. [2]

Механические свойства металла шва, наплавленного металла и сварного соединения, выполненных электродами для сварки конструкционных сталей, должны соответствовать нормам, приведенным в таблице 6.

Таблица 6 [9] Характеристики электродов

Механические свойства при нормальной температуре

Содержание в наплавленном металле, %

Металла шва или наплавленного металла

Сварного соединения, выполненного электродами диаметром менее 3 мм

Временное сопротивление разрыву ув МПа

Относительное удлинение д5, %

Ударная вязкость aн Дж/см 2

Временное сопротивление разрыву ув МПа

источник

Rasenna › Блог › Рассуждения на тему видов сварки и отличие ручной сварки от конвейерной

Доброго времени суток, уважаемые пользователи Drive2
При публикации одной из своих записей касательно восстановления кузова, в БЖ своей 2105, столкнулся с целый дискуссией на тему качества сварки в неконвейерных условиях, что собственно и натолкнуло меня на мысль о публикации пространственного опуса на тему ремонтной сварки автомобильного кузова.

Предлагаю сразу определится с видами сварки, которые будем тут обсуждать, а именно: автогенная сварка и контактная. Теперь давайте более подробнее про каждый из вышеперечисленных способов:

1. Автогенная сварка.
«αὐτογενής» (автогенно) в переводе с греческого означает «самопроизвольно». Подобный способ сварки – создания неразъемного соединения элементов – подразумевает расплавление их участков и взаимное растворение образовавшихся жидких фаз. Соединение в виде сварного шва формируется после остывания конструкции.

Очевидно, что для реализации такого способа свариваемые металлы необходимо нагреть до температуры плавления. С помощью электрической дуги это несложно. Проблемы возникают позже. Ведь при плавлении и последующем охлаждении металла, особенно сложнолегированного стального, а тем более алюминиевого сплава, его первоначальный состав и структура меняются коренным образом. Расплавленный металл активно реагирует с окружающей средой и за очень короткое время способен «нахватать» таких элементов, как кислород, водород, азот. В сварном шве образуются стойкие интерметаллидные соединения с ними, снижающими прочность и повышающими его хрупкость.
Заготовки, из которых штампуют элементы кузова, – это тонкие листы, полученные многократной прокаткой, в процессе которой структура сплава качественно изменяется в лучшую сторону. Сплав приобретает мелкозернистое строение, что повышает его прочность характеристики. Во время сварки, при повторном плавлении, структура металла в этой зоне огрубляется, а прочностные свойства снижаются. Кроме того, нагрев прилегающих участков, называемых зоной термического влияния, также неполезен, поскольку ослабляет металл в этой зоне.
Из сказанного следует следующий вывод: прибегая при ремонте кузова к автогенной сварке, необходимо использовать такой способ, при котором вводится минимально достаточное для расплавления и соединения деталей количество тепла, а сам расплавленный металл необходимо надежно изолировать от неблагоприятных воздействий окружающей среды.
Необходимо отметить, что при конвейерном производстве кузовов автогенные способы сварки практически не используют. Основной способ соединения кузовных элементов на заводах – точечная контактная сварка в специальных кондукторах, обеспечивающих исключительную стабильность режимов сварки. Применяется и лазерная сварка с локальным термическим воздействием.
Тем не менее все автопроизводители допускают использование в ремонтном процессе автогенной сварки для замены кузовных элементов. Дело в том, что компании – изготовители сварочного оборудования сумели создать оборудование, позволяющее получать сварные соединения сложнолегированных сплавов, по прочностным и коррозионным свойствам не уступающим заводским.

2. Контактная сварка.
Более точно этот способ называется точечной электрической контактно-стыковой сваркой сопротивлением. Такой способ нашел самое широкое распространение в конвейерном производстве кузовов автомобилей, а также в авторемонтной индустрии. Причина в исключительно высоком качестве получаемого сварного соединения и минимальном тепловом воздействии на свариваемые элементы. Достоинства точечной контактной сварки в том, что она позволяет соединять листовые детали внахлест, создавая из штампованных элементов сложную пространственную конструкцию кузова автомобиля.

Другими способами сварки создавать нахлестовые соединения весьма затруднительно, обычно конструкторы сварных изделий стремятся разработать их так, чтобы сварка разнородных элементов осуществлялась на их стыках.
При контактной сварке сварная точка образуется внутри металла, на границе двух деталей, и на поверхности проявляется в виде небольшого углубления после сжатия электродов. Сам механизм нагрева основан на том, что при прохождении тока через участок контакта деталей он разогревается до состояния текучести.

Приложенное внешнее давление вызывает при этом местную пластическую деформацию, достаточную для образования межатомного сцепления соединяемых деталей. Особо следует подчеркнуть, что плавления металла деталей не происходит, что и обуславливает предельно малое термическое воздействие на сварную точку. Если учесть, что при таком способе свариваемый участок надежно защищен от окружающей атмосферы, становится понятно, почему достигаются исключительно высокие прочностные характеристики соединения.
Качество сварной точки зависит от многих параметров: усилия сжатия электродов, их диаметра в месте контакта со свариваемым материалом, величины и длительности импульса сварочного тока. Стремление получить высококачественное сварное соединение высоколегированных автомобильных материалов заставило уменьшить время действия сварочного импульса до величины, ниже 0,1 с, одновременно увеличивая ток до огромных значений выше 10 000 А. В таких условиях главным критерием сварочного агрегата становится его особенность обеспечить строго стабильный сварочный ток как на протяжении одного импульса, так и от импульса к импульсу. Обеспечить такой показатель способен только высокочастотный инверторный блок питания, которым и оснащены современные аппараты точечной контактной сварки для авторемонта. Управление длиной импульса и величиной сварочного тока в подобных агрегатах осуществляется микропроцессорами. Мастер задает характеристики свариваемых металлов, а процессор выбирает оптимальные токовые значения и усилие сжатия сварочных электродов.
При выборе режимов аппараты используют встроенную базу данных, сформированную на основе рекомендаций автопроизводителей.
В наиболее продвинутых аппаратах микропроцессор в режиме реального времени учитывает степень загрязненности свариваемых деталей путем замера электрического сопротивления и даже отклонения электродов от перпендикулярного по отношению к рабочей поверхности. Иными словами, режим сварки каждой точки автоматически адаптируется к условиям процесса.

А теперь, уважаемы господа, давайте ответим на вопрос, что лучше, конвейерная сварка или грамотная качественная сварка «Handmade» с использованием современного профессионального оборудования?
Моё мнение, то, что собрано руками — всегда лучше, а то, что собрано грамотно ещё и надёжнее, т.к. любой конвейер — это механизм, который может (да и не редко) дать сбой, с учётом повальной экономии на электричестве, электродах и прочего, на автомобильных заводах сварка производится по принципу «приемлемой надёжности», т.е. можно и лучше, но по ТЗ и регламентам и так достаточно.
Производя контактную сварку своими руками, используя те же технологии, можно добиться наилучшего результата, т.к. делаешь для себя, сварочные узлы будут способны выдержать большие нагрузки, нежеле стандартные. Если все работы производит профессионал и он не ограничен по времени (ни каких пятилеток за три дня), то вероятность перегрева металла, малого пятна контакта и тому подобного — сведена к минимуму.
Миф о том, что после полной переварки кузова теряется прочность и при любом незначительном повреждении образуются более обширные деформации, основан на элементарном незнании физики и распространяется простыми обывателями по «сарафанному радио». Более обширной деформации подвержен ранее деформированный, рихтованный металл, обусловлено это молекулярной структурой самого метелла и эффектом «памяти металла», т.е. даже при незначительном воздействии, металл стремится принять форму, до которой он был ранее деформирован. Если деталь новая, не рихтованная и правильно приваренная, она будет служить дольше и (не дай Бог), если чего, то гораздо прочнее 😉
Касательно аргонной сварки, ну куда же без пары заплаток? Не менять же 20 элементов кузова к ряду, из-за дыры в 2 см в диаметре, а при правильном подходе к сварке и грамотной обработке поверхностей после, служить будет очень долго, без гнили, ржи и прочего… Да и сам процесс достаточно интересен и увлекателен, особенно, если он будет выглядеть примерно так:

Всем всех благ, варите, конструируйте и наслаждайтесь!

источник

Введение Сварка

Технологический процесс получения неразъёмного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия при их нагреве (местном или общем), и/или пластическом деформировании.

Сварка применяется для соединения металлов и их сплавов, термопластовво всех областях производства и в медицине.

При сварке используются различные источники энергии: электрическая дуга, электрический ток, газовое пламя, лазерное излучение, электронный луч, трение,ультразвук. Развитие технологий позволяет в настоящее время проводить сварку не только в условиях промышленных предприятиях, но в полевых и монтажных условиях (в степи, в поле, в открытом море и т. п.), под водой и даже в космосе. Процесс сварки сопряжен с опасностью возгораний; поражений электрическим током; отравлений вредными газами; поражением глаз и других частей тела тепловым, ультрафиолетовым, инфракрасным излучением и брызгами расплавленного металла.

Виды сварки

Сварка трением, образование сварного соединения при такой разновидности сварки давлением происходит при взаимном перемещении свариваемых изделий относительно друг друга при действии на них давления.

Точечная сварка — это один из видов контактной электросварки металлов. При точечной сварке, детали нагреваются электрическим током в месте контакта и сдавливаются (не во всех случаях). А основной тип соединения — нахлесточное сварное соединение, поэтому точечная сварка получила широкое распространение в автомобильной промышленности, при ремонте автомобилей, для изготовления штампованных конструкций.

Контактная сварка — это один из термомеханических классов сварки, при котором сварное соединение образуется в результате нагрева свариваемых изделий и последующей пластической деформации места соединения под действием сжимающего усилия.

Лазерная сварка — это один из самых технологичных методов сварки, по плотности мощности он не уступает электронно-лучевой сварке, но при этом не требует построения вакуумной камеры. Лазерную сварку проводят в среде защищенных газов или на воздухе. В отличие от электрической дуги и электронного луча, на лазерный луч не влияют магнитные поля — это обеспечивает более стабильное формирование сварочного шва.

Электродуговая сварка.

Дуговая сварка — источником теплоты для нагрева и плавления металла в таком виде сварки является электрическая дуга, которая возникает между свариваемым металлом и электродом. Теплота электрической воздействует на кромки свариваемых деталей, электродный металл плавится — образуется сварочная ванна. При затвердении металла в сварочной ванне создается сварное соединение. Для создания электрической дуги используются специальные источники постоянного или переменного тока

Электросварка.

При дуговой электросварке источником тепла является электрическая дуга. Сварочная дуга представляет собой электрический разряд между двумя электродами в газообразной среде, который сопровождается выделением большого количества теплоты и света.

При сварке по способу Бенардоса одним электродом является уголь, другим — свариваемый металл. При сварке по способу Славянова одним электродом является металлический расплавляющийся пруток, другим — свариваемый металл. Электроды присоединяют проводами к источникам питания — сварочной машине.

Возбуждение — зажигание дуги — производится мгновенным соприкосновением электродов с последующим их разведением. В момент короткого замыкания возникший в цепи ток быстро разогревает электроды в местах их контакта. При отодвигании одного из электродов они расплавляются в месте контакта и пространство между ними заполняется парами металла. Действием дуги свариваемый металл расплавляется на ту или иную глубину, называемую глубиной провара. Металл электрода, расплавляемый в дуге, переносится в ванну основного металла в виде капель различной величины. При высокой температуре паров металла ионизация пространства между электродами получается настолько значительной, что небольшого напряжения между электродами (порядка 50 В) достаточно для образования электрического разряда.

Для поддержания устойчивого разряда — дуги — необходима беспрерывная ионизация дугового промежутка. Эта ионизация обеспечивается электронами, вылетающими с поверхности отрицательного электрода (катода). Свободные электроны, находящиеся на поверхности отрицательного электрода в беспорядочном движении, при высоких температурах под действием электрического поля вылетают за пределы катода. Движущиеся от катода электроны сталкиваются в дуговом промежутке с молекулами паров и газов и расщепляют их на положительные и отрицательные — ионы и электроны.

Число вырывающихся из катода электронов увеличивается и сообщаемая им кинетическая энергия возрастает с увеличением напряжения на электродах. При достаточном напряжении на дуге взаимная бомбардировка катода положительными ионами и анода отрицательными ионами и электронами переводит кинетическую энергию этих частиц в тепловую. Выделение тепловой и световой энергии электродами в сварочной дуге происходит неравномерно. В связи с этим температура анода выше температуры катода. Температура в осевой части столба дуги достигает 6000°С.

Рис.1. Схема металлической сварочной дуги: 1 — электрод; 2 — наплавленный металл; 3 — основной металл; 4 — кратер; 5 — глубина проплавления

При прохождении тока через дуговой промежуток (при установившейся дуге) напряжение горения дуги (15—35 В) будет ниже напряжения зажигания (55—60 В). Величина напряжения дуги зависит от теплового состояния дугового промежутка, от степени его ионизации и, главным образом, от длины дуги. Чем короче дуга, тем меньше напряжение. Сварочную дугу можно питать постоянным и переменным током. Дуга, питаемая переменным током, менее устойчива вследствие того, что ток в ней при нормальной частоте 50 периодов 100 раз в секунду меняет свое направление, и в эти моменты при малой ионизации дугового промежутка дуга может обрываться. Для повышения устойчивости дуги, питаемой переменным током, применяют ионизирующие покрытия на электродах и наложение токов высокой частоты на дугу.

При сварке металлическим электродом по способу Н. Г. Славянова расплавляемый дуговой металл электрода в виде капель переходит в ванну расплавленного основного металла, перемешивается и кристаллизуется в ней после остывания, образуя сварной шов. Сварку по Славянову можно производить на постоянном токе при прямой и обратной полярности и на переменном токе. Схема металлической сварочной дуги представлена на рис. 1.

источник

Введение

Сварка – это технологический процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их нагревании или пластическом деформировании, или совместном действии того и другого.

Благодаря своей относительной простоте применения, быстроте соединения различных материалов сварка находит широкое применение.

Сварка является экономически выгодным, высокопроизводительным технологическим процессом, что обеспечивает ее использование во всех областях машиностроения, строительства, науки и техники. Например, при замене клепаных конструкций на сварные соединения экономия металлов составляет 15–20 %, а при замене литых деталей сварными – около 50 %. Сварка является необходимым технологическим процессом обработки металлов. В настоящее время сваркой соединяют разнородные и однородные материалы: металлы и неметаллы – от нескольких микрон в микросхемах до нескольких метров – в тяжелом машиностроении. Трудно назвать отрасль промышленности, которая обходилась бы без применения сварки. Сваркой соединяют детали космических кораблей, лопасти турбин, корпуса подводных лодок и самолетов, корпуса приборов и выводы микросхем. Детали, соединенные сваркой, имеют прочность, равную прочности основного металла.

Различают два вида (способа) сварки по типу энергетического воздействия:

сварка плавлением (с применением тепловой энергии);

сварка давлением (с применением механической энергии).

В первом случае материал в месте соединения расплавляют, а во втором процесс выполняют с приложением давления и местным нагревом или без него.

Энергия в зону сварки вводится в виде теплоты, упругопластической деформации, электронного, ионного, электромагнитного и других видов воздействия.

В зависимости от формы энергии, используемой для образования сварного соединения, все виды сварки разделяют на три класса:

• К термическому классу (Т) относятся виды сварки, осуществляемой плавлением с использованием тепловой энергии. Основными источниками теплоты являются сварочная дуга, плазма, лучевые источники энергии (лазерное, электронное, фотонное излучение), теплота, выделяемая при химических реакциях (газовая, термитная).

• К механическому классу (М) относятся виды сварки, осуществляемые с использованием механической энергии и давления (ультразвуковая, взрывом, трением).

• К термомеханическому классу (ТМ) относятся виды сварки с использованием тепловой энергии и давления (диффузная сварка, контактная и др.).

Наибольший объем среди всего разнообразия видов сварки занимает дуговая сварка, в частности ручная дуговая электросварка. Источником теплоты при этом является электрическая дуга, которая горит между электродом и заготовкой.

Впервые мысль о возможности практического использования «электрических искр» для плавления металлов высказал в 1753 г. академик Российской Академии наук Г. Р. Рихман, исследовавший атмосферное электричество.

В 1802 г. профессор Санкт-Петербургской военно-хирургической академии Василий Владимирович Петров открыл явление электрической дуги. Петров исследовал возможности использования электричества для освещения. Им был собран «Вольтов столб» из 2 400 пар медно-цинковых кружков, с проложенной между ними бумагой, смоченных раствором нашатыря. Это была одна из самых мощных электрических батарей того времени.

В. В. Петров в своих трудах первым описал явление электрической дуги и показал возможность использования теплоты, выделяемой дугой, для плавления металлов.

Этим открытием, одним из самых значительных в XIX веке, В. В. Петров положил начало развитию новых технических знаний и науки, получивших дальнейшее практическое применение в электродуговом освещении, электрическом нагреве, плавке и сварке металлов.

Однако в то время это открытие не нашло практического применения. Спустя почти 80 лет наш русский изобретатель Н. Н. Бенардос в 1892 г. начал разработку практического применения электрической дуги для сварки металлов. Н. Н. Бенардос в 1885–1887 гг. запатентовал свой способ сварки «Электрогефест», или «Способ соединения и разъединения металлов непосредственным действием электрического тока», в 13 странах, в том числе и в Америке, хотя американский ученый И. Томпсон в 1867 г. одним из первых в мире пытался сварить два куска металла электросваркой.

В 1892 г. на электротехнической выставке, проходившей в Петербурге, Н. Н. Бенардос представил описание своего изобретения: «Электропайка, электросварка, электроотливка, электронаслоение, электросверление, электроразрезывание всех металлов». Он присоединял один полюс динамо-машины к листу металла, а другой к угольному электроду. В пламя дуги вводили металлический стержень.

Но Бенардос не догадался о том, что можно не вводить посторонний металл при плавящемся электроде. Это сделал русский ученый Н. Г. Славянов. Его «Способ электрической отливки металлов» увидел весь мир. На выставке в 1893 г. Славянов получил золотую медаль «За дуговую электросварку». Он представил двенадцатигранную призму из никеля, томпака, стали, чугуна, нейзильбера, бронзы обычной и колокольной, где все грани были соединены сваркой. После этого Америка уже не сомневалась в возможностях сварки цветных металлов по способу Н. Г. Славянова.

С именами Н. Г. Славянова и Н. Н. Бенардоса связано развитие металлургических основ электрической дуговой сварки, контактной сварки, создание первого автоматического регулятора длины дуги и первого сварочного генератора. Н. Г. Славяновым были предложены флюсы для получения высококачественного металла сварных швов. В Московском политехническом музее демонстрируется подлинный сварочный генератор Н. Г. Славянова и образцы сварных соединений.

В начале 1930-х годов в связи с потребностью в более прогрессивных способах соединения металлов стала развиваться сварочная техника. В 1929 г. советский инженер-изобретатель Д. А. Дульчевский разработал способ автоматической дуговой сварки под флюсом. Под руководством академика В. П. Вологдина в 1924–1935 гг. с использованием электрической дуговой сварки были изготовлены первые отечественные котлы и корпуса судов. Сварку применяли ручную дуговую, электродами с тонкими ионизирующими покрытиями.

В 1935–1939 гг. стали применять легированные электроды с толстым покрытием. Их применение позволило использовать сварку в изготовлении промышленного оборудования и строительных конструкций.

Огромный вклад в развитие сварочных технологий внес киевский институт им. Е. О. Патона.

Здесь была разработана электрошлаковая сварка, изготовлены высокоскоростные сварочные машины для сварки под флюсом. Применение электрошлаковой сварки позволило заменить литые и кованые крупногабаритные изделия сварными, более технологичными.

В период Великой Отечественной войны сварка получила широкое применение в военной технике, были разработаны уникальные способы сварки броневых сталей. В послевоенное время при восстановлении народного хозяйства сварка как прогрессивный способ соединения металлов значительно вытеснила клепку.

С 1948 г. промышленное применение получили новые способы сварки: сварка в среде защитных газов, ручная, механизированная и автоматическая сварка плавящимся и неплавящимся электродом.

В 1950–1952 гг. в ЦНИИТмаше при участии МВТУ им. Н. Э. Баумана и ИЭС им. Е. О. Патона под руководством профессора К. Ф. Любавского была разработана сварка низколегированных и низкоуглеродистых сталей в среде углекислого газа. Сейчас этот способ сварки составляет 30 % объема всех сварочных работ.

В конце 1950-х годов французскими учеными был разработан новый вид сварки плавлением – электронно-лучевой, получивший широкое применение в производстве микроэлектронной техники и выплавке особо чистых сплавов.

Впервые в мире советские космонавты В. Кубасов и Г. Шонин в 1969 г. осуществили автоматическую сварку и резку металлов в открытом космосе. В 1984 г. космонавты С. Савицкая и В. Джанибеков провели ручную сварку, резку и пайку различных металлов в космосе. В настоящее время сварку и резку металлов проводят в космосе, под водой, в вакууме и на открытом воздухе.

Открытая и разработанная Н. Н. Бенардосом в 1887 г. контактная и шовная сварка широко применяется в настоящее время. Кузов современного автомобиля, состоящий из тонколистовых штампованных деталей, сварен более чем в 10 тысячах точек. Самолет насчитывает уже несколько миллионов сварных точек или «электрозаклепок».

Наряду с дуговой электросваркой, к сварке плавлением относят газовую сварку. Для плавления металлов используют тепло пламени смеси газов, сжигаемых с помощью горелки. Газовая сварка классифицируется по виду применяемого горючего газа: ацетиленокислородная, керосино-кислородная, бензино-кислородная, пропанобутано-кислородная, водород-кислородная и др.

Способ газовой сварки был разработан в конце XIX столетия, когда началось промышленное производство кислорода, водорода и ацетилена. В этот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных соединений. Наибольшее развитие газовая сварка с применением ацетилена получила в период развития сети железных дорог и вагоностроения. Необходимо было производить большой объем работ по сборке вагонов, паровозов. В настоящее время газовая сварка применяется во многих отраслях промышленности: при изготовлении и ремонте изделий из тонколистовой стали, сварке цветных металлов и их сплавов, а также при наплавочных работах. Разновидностью газопламенной обработки является газотермическая резка, широко применяемая на этапе заготовительных операций при раскрое металлов и резке металлолома.

Несмотря на многочисленные способы применения механизированных и автоматизированных видов сварки, масштабы применения ручной дуговой электросварки увеличиваются. Это связано с созданием новых материалов и оборудования для производственных процессов. На эти позиции ручную сварку выдвинули высокая скорость соединений металлов и технологичность процесса.

Начальной и конечной операцией создания современных конструкций часто является ручная дуговая сварка.

источник

Adblock
detector