Меню Рубрики

Выводы по диплому по сварке

Дипломная работа: Технология изготовления сварной конструкции «Рама»

Сварочное производство в Старом Осколе

1.1 Краткая характеристика производства

1.2 Рабочее место сварщика

2.1 Назначение конструкции и описание сварочных швов

2.2 Материалы, применяемые для изготовления конструкции

2.3 Заготовительные операции

2.5 Выбор сварочного оборудования

2.7 Сварка конструкции (режимы сварки и сварочные материалы)

2.8 Контроль сварочных швов

2.9 Техника безопасности при сварочных работах

3.1 Охрана труда на предприятии и промышленная санитария

4.2 Расчет расхода сварочных материалов

Основоположниками сварки являются: В.В. Петров (1731-1834), Н.Н. Бенардос (1842-1905), Н.Г. Словянов (1854-1897).

В 1802 году впервые в мире В.В. Петров открыл и наблюдал дуговой разряд от постоянного и сверхмощного вольтового столба. Этот столб или батарея как называл его Петров, был наиболее мощным источником в то время. Спустя 80 лет Н.Н. Бенардос в 1881 году впервые применил Электрическую дугу между угольным электродом и металлом для сварки.

Почти одновременно с Бенардосом работал другой российский ученый Н.Г. Словянов. Словянов разработал способ дуговой сварки металлическим электродом и защитной сварочной зоны слоем флюса и первый в мире механизм «Электроплавильник – для полуавтоматической подачи электродного прутка в зону сварки. Способ сварки получил название: дуговая сварка по способу — Словяного. Первая демонстрация состоялась в 1882 году. В настоящее время существует большое количество устройств для сварки, например: полуавтомат для дуговой сварки в защитных газах, при котором проволока подается автоматически, а передвижение горелкой производится вручную. Сварочный автомат в этом случае проволока и передвижение горелкой производится автоматически. Газовая сварка – при этом способе детали свариваются пламенем, которое образуется при сгорании газов или паров горючих жидкостей.

Лазерная, плазменная, с дистанционным управлением, подводная сварка.

Сварочное производство в Старом Оскол е

В Старом Осколе сварочное производство представлено на заводах: БСК, ЗВЗ, ЗЭМЗ, ВММЗ, МКМ, ОЭМК, ЦМЗ, СГОК, КПД, ЖБИ, строительно-монтажных управлениях и ремонтная сварка в различных организациях.

Завод Электромонтажных Заготовок – выпускает шкафы электрооборудования, столбы для освещения, товары народного потребления, используя ручную сварку и контроль.

Завод вентиляционных заготовок выпускает воздуховоды, ворота для гаражей. Используется сварка ручная дуговая, полуавтоматическая плавящимся электродом в среде углекислого газа, контролируется сварка.

Воронежский механомонтажный завод выпускает нестандартное оборудование для монтажных организаций и госзаказы. Применяется ручная дуговая и контактная сварка, сварка в среде защитных газов, а также сварка плавящимся электродом.

Цех металлоконструкций (ЦМК), Оскольский электрометаллургический комбинат и Стойленский горно-обогатительный комбинат – выпуск нестандартного оборудования, металлоконструкций, для ремонта основного оборудования.

Применяется ручная, дуговая и полуавтоматическая сварка в среде защитных газов плазменная резка.

Завод крупнопанельных деталей – изготовление железобетонных конструкций. Применяется ручная дуговая сварка, контактная сварка и контактная сварка под флюсом.

Белгородстальконструкция – производит металлоконструкции для собственных нужд. Применяется ручная дуговая и полуавтоматическая сварка.

В остальных цехах, при ремонтных работах используют ручную дуговую сварку, сварку исплавящимся электродом в среде защитных газов, наплавка автоматом под слоем флюса, плазменное напыление.

1.1 Краткая характеристика производства

В мастерской изготавливают и сваривают ворота, решетки, контейнеры, также выполняется резка уголка, листов разных размеров и толщин. В мастерской применяют ручную дуговую сварку, есть также газовая сварка и резка. На заготовительном участке применяются механические ножницы. Сварные работы выполняются для нужд лицея, а также выполняются заказы города.

1.2 Рабочее место сварщика

Рабочее место сварщика должно быть расположено в специальных сварочных кабинках или непосредственно у сварочного изделия. Сварочная кабина должна иметь размер 2:3 метра, каркас должен быть металлический, стены кабины высотой 2 метра, расстояние от пола 300 мм., стены сделаны из стали или другого несгораемого материала, стены окрашивают в светлые тона огнестойкой краской, дверной проем закрывают брезентовым занавесом. В кабине должна стоять местная вентиляция, внутри кабинки должен стоять стол высотой 500-600 мм., для работы, сидя 900 мм., для работы, стоя к столу приварен болт, служащий для заземления, также должен быть шкафчик для необходимых инструментов и документаций, для удобства работы устанавливают винтовой стул. Все оборудование кабины должно быть заземлено.

2.1 Назначение конструкций и описание сварочных швов

Конструкция «рама» представляет собой объёмную пространственную конструкцию, предназначенную для объединения отдельных деталей и механизмов в единый агрегат. Одной из главных требованье, предъявляемых к рамам,– жоскость конструкции. Сварной шов – это участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла. Швы классифицируют по следующим признакам:

1) По типу сварного соединения:

а) Стыковые – обозначаются буквой: С.

б) Угловые — обозначаются буковой: У.

в) Тавровые — обозначаются буквой Т.

г) Нахлесточное – обозначаются буквой: Н.

2) По положению в пространстве: а) в нижнем положении, б) вертикальное положение, в) горизонтальное положение, г) Потолочное положение, д) Кольцевой шов.

3) По форме наружной поверхности: а) нормальный шов; б) усиленный или выпуклый шов; в) ослабленный или вогнутый шов.

4) По протяженности: а) сплошной, б) прерывистый (цепной в шахматном порядке).

5) По заполнению сечения: а) однослойный однопроходный; б) многослойный, в) многослойный многопроходный; г) двухсторонний.

6) По отношению к направлению действующих сил: а) фланговый, б) лобовой;

в) косой; г) комбинированный.

Согласно чертежу «рама» выполняется сварными швами:

Нахлёсточное соединение без скоса кромок, однастороний прерывистый, катит шва 1 мм.,

Выполнен ручной дуговой сваркой

Гост 5264-80-Т1 4

Тавровое соединение, односторонний без скоса кромок катит шва 1 мм.,

Выполнен ручной дуговой сваркой.

Тавровое соединение, односторонний без скоса кромок катит шва 1 мм.,

Выполнен ручной дуговой сваркой.

Тавровое соединение со скосом одной кромки, однастороний.,

Выполнен ручной дуговой сваркой

2.2 Материалы, применяемые для изготовления конструкций

Сталь – это сплав железа с углеродом.

Сталь классифицируется по некоторым признакам:

1)По химическому составу: а) углеродистые содержание углерода более 0,25%.

Среднеуглеродистые содержание углерода от 0,25 до 0,6%, высокоуглеродистые содержание углерода от 0,46 до 0,7%; б) легированные – низколегированная содержание легирующих элементов до 2,5%. Среднелегированная содержание легирующих элементов от 2,5 до 10%. Высоколегированная содержание легирующих элементов более 10%.

2) По применению: а) конструкционная; б) инструментальная; в) специальная.

3) По качеству: а) обыкновенного качества – 0,025% примесей; б) качественная – 0,15% примесей; в) высокого качества – 0,015% примесей; г) особо высокого качества — > 0,015% примесей. Качество стали, зависит от содержания примесей (сера, фосфор, кислород).

4) По степени раскисления: а) кипящая (КП) – не раскисленная сталь, б) спокойная (СП) – застывает спокойно; в) полуспокойная (ПС) – частично раскисленная. При изготовлении рамы использовалась сталь марки Ст3сп: сталь конструкционная низкоуглеродистая, обыкновенного качества, степень раскисления спокойная.

2.3 Заготовительные операции

К заготовительным операциям относят: очистку, гибку, резку, правку, мех. обработку.

Правка необходима для выправления проката. Правка производится путем пластического изгиба или растяжения. Оборудование для правки делят на: ротационные машины, прессы растяжные, правильные машины.

1) Ротационные машины: листоправильные, многоволковые, сортоправильные, многороликовые машины.

2) Прессы бывают винтовые, гидравлические, кривошипные.

Гибка: ее выполняют путем пластического изгиба заготовок. По принципу действия оборудование для гибки делят на: ротационные машины и прессы. К ротационным машинам относят: листогибочные, профилегибочные многоволковые станы, зибовочные машины, сортогибочные роликовые машины, трубогибочные машины. Прессы предназначены для гибки различных профилей из листового и полосового материала, на прессах можно выполнить пробивку отверстий, штамповочные операции.

Очистка: её применяют для удаления с поверхности листа средств консервации, загрязнений ржавчины окалины, заусенцев, шлака, которые затрудняют процесс сварки, вызывают дефекты сварных швов и препятствуют нанесению защитных покрытий, для очистки деталей применяют механическую и химическую очистку. К механическим относят: дробеструйную, дробемётную, пескоструйную, на зачистных станках, галтовочных барабанах. К химическим методам относят: обезжиривание, ванный или струйный способ.

Резка. При изготовлении деталей применяют следующие виды резки ножницами на отрезных станках, штампах, на прессах, термическую резку. Ножницы используют при резке листов фасонного профиля малых толщин. Ножницы бывают: однодисковые с наклонным ножом, прессножницы. Отрезные станки применяют для резки труб фасонного и сортового профиля. Термическую резку (газовая и дуговая резка) применяют для резки тугоплавких металлов листового материала и труб большого диаметра.

Механическая обработка. В производстве деталей сварных конструкций металлорежущие станки применяют для выполнения операций сверления отверстий, обработок кромок и поверхностей. Для сверления применяют сверлильные станки, радиальносверлильные, вертикальносверлильные. Многошпиндельные кромки и поверхности обрабатывают на кромкострогальных, продольнострогальных станках, цилиндрические обечайки на токарнокарусельных станках.

Перед изготовлением деталей используют следующие технологические операции: разметку, резку, штамповку, зачистку, правку, подготовку кромок.

Разметка состоит в нанесении на металл конфигурации заготовки с припуском. Припуск – это разность между размером заготовки и чистовым размером детали. Припуск снимают при последующей обработке. Для разметки применяют разметочные столы или плиты необходимых размеров.

Резку выполняют кислородными резаками по намеченной линии контура детали вручную или газорезательными машинами специального назначения. Резка на металлических станках более производительна и дает высокое качество реза. Для механической прямолинейной резки листового металла применяют прессножницы.

Штамповку заготовок проводят в холодном или горячем состоянии. Стальные листы толщиной до 6-8 мм. штампуют в холодную. Для металла толщиной 8-10 мм. применяют штамповку с предварительным подогревом.

Металл зачищают для удаления заусенцев с кромок деталей после штамповки, а также для удаления с поверхности кромок окалины и шлаков после кислородной резки. Для зачистки мелких деталей используют стационарные установки с наждачными кругами. Крупногабаритные детали зачищают переносными пневматическими или электрическими шлифмашинами.

Детали и заготовки при их искривлении в процессе кислородной резки или резки на механических ножницах правят на листоправильных вальцах или вручную на плите. Правку тонколистового металла проводят в холодном состоянии на листоправильных вальцах или прессах, толстолистового металла – в горячем состоянии вручную на правильных плитах.

Подготовку свариваемых кромок деталей большой толщины выполняют кислородной резкой или обработкой на строгальных или фрезерных станках, для подготовки тонколистового металла используют кромкогибочные прессы или специальные станки. Гибку деталей и заготовок проводят на металлогибочных вальцах. Здесь же изготавливают обечайки для сварки различных емкостей цилиндрической формы. Согласно чертежу производится скос одной кромки под углом 45* сварной шов.

2.5 Выбор сварочного оборудования

В качестве источника питания для Электрической дуги применяют «Трансформатор», «Выпрямитель», «Преобразователь».

Сварочный трансформатор предназначен для положения напряжения сети до необходимого рабочего напряжения и регулировки силы сварочного тока. Он состоит из: корпуса, сердечника, первичной и вторичной обмотки, переключателя ступеней, токоуказательного механизма.

Сварочный выпрямитель представляет собой устройство, предназначенное для преобразования переменного тока в постоянный.

Он состоит из: силового трансформатора, блока силовых вентилей, стабилизирующего дросселя, блока защиты, системы управления вентилями.

Сварочный преобразователь – это машина, служащая для преобразования переменного тока в постоянный сварочный ток.

Преобразователь состоит из: генератора постоянного тока и приводного трехфазного двигателя, находящихся на одном валу и в одном корпусе.

При изготовлении «рамы» я буду использовать выпрямитель ВДУ-601 – Выпрямитель дуговой универсальный номинальная мощность которого 600 Ампер номер модификации 1.

Номинальная мощность- 69 А.

Сила номинального сварочного тока — 630 А.

Придел регулирования сварочного тока — 100-700 А.

Напряжение холостого хода – 90 В.

Номинальное рабочее напряжение — 66В.

Габаритные размеры – 1250 х 900 х 1155 мм. Масса — 59,5 кг.

Сборка – это технологическая операция, обеспечивающая подлежащими сварке деталями необходимое взаимное расположение с закреплением их специальными приспособлениями или прихватками.

Существуют следующие приспособления для сборки:

1) сборочно-сварочная плита – опорное приспособление в виде горизонтальной металлической плиты с пазами;

2) стеллаж – опорное приспособление с плоской горизонтальной поверхностью для размещения крупногабаритных изделий в цехе;

3) сборочно-сварочные стенды – устройства для размещения деталей собираемых и свариваемых крупногабаритных изделий и фиксаций их в нужном положении.

Основой сборочного приспособления является жесткий каркас, несущий упоры фиксаторы и прижимы. При сборке детали заводят в приспособления, укладывают по упорам и фиксаторам и закрепляют пружинами.

Последовательность выполнения сборочно-сварочных операций может быть различной:

— Сварку выполняют после полного завершения сборки.

— Сборку и сварку производят переменно, например, при изготовлении конструкций наращиванием отдельных элементов.

— Общей сборке и сварке конструкций предшествует сборка и сварка узлов.

Под режимом сварки понимают – совокупность параметров, которые обеспечивают устойчивое горение дуги, получение сварочных швов заданных размеров, формы и качества. Существуют главные параметры и дополнительные параметры.

К главным параметрам относятся: 1) сила сварочного тока; 2) напряжение дуги; 3) скорость сварки.

К дополнительным относятся: 1) диаметр электрода; 2) тип и марка электрода; 3) род и полярность сварочного тока; 4) пространственное положение шва.

Определение режимов сварки для рамы:

1) По толщине металла определяем диаметр электрода (dэл ), так как толщина металла, из которого изготавливается спираль равна 10 мм., значит, будем использовать электрод диаметром 4 мм.

2) Сила сварочного тока J(А) равна: по формуле Jсв =dэл ·k, рассчитываем силу сварочного тока. k – коэффициент пропорциональности зависит от диаметра электрода. Jсв = 30·dэл =30·4=120 А.

3) Напряжение на дуге (Uд ) при ручной дуговой сварке будет равно 24В.

4) Скорость сварки (Uсв ) зависит от квалификации сварщика и толщины свариваемого металла.

5) Род тока и полярность устанавливаются в зависимости от вида свариваемого металла и от его толщины, при сварке постоянным током обратной полярности на электроде выделяется больше теплоты. Обратная полярность применяется при сварке тонкого металла и при сварке высоколегированных сталей, чтобы не было перегрева.

6) Положение шва в пространстве при ручной дуговой сварке можно производить по всех пространственных положениях.

При сварке рамы, применяются электроды:

УОНИ 13/45- марка электрода

У – для углеродистой стали

Е-412(3) – группа индексов, характеризующая механические свойства

Существуют различные методы контроля сварных швов: гидравлические, пневматические, вакуумные, керосиновый. Сварные швы рамы контролируются внешним осмотром. Он заключается в том, что это простейший и не обходимый способ проверки качества сварки в готовом изделий. Внешний осмотр выявляет несоответствие шва требуемых геометрическим размерам, наплывы подрезы, прожоги. Размеры швов должны соответствовать указным на чертеже. Не допускается какое бы ни было уменьшение фактического размера шва по сравнению с заданным размером. При выявлений наружных дефектов (поры, трещины)–нужно удалить шлак, зачистить место сварки удалить поры и трещины с помощью горелки или шлифмашинки, а после удаления и зачистки переварить шов сначала

2.9 Техника безопасности при сварочных работах

Все сварочные работы должны выполняться в соответствии с требованиями «Правил безопасности при работе с инструментом и приспособлениями».

К электросварочным и газосварочным работам допускаются лица не моложе 18 лет, прошедшие специальную подготовку и проверку теоретических знаний, практических навыков, знаний по технике безопасности и имеющих удостоверение сварщиков. Все сварщики должны проходить проверку знаний инструкции по охране труда.

Проходы между источниками сварочного тока должны быть не менее 0,8 м. Проходы между группами сварочных трансформаторов должны иметь ширину не менее 1 м. Запрещается установка сварочного трансформатора над регулятором тока.

Запрещается производство электросварочных работ во время дождя и снегопада, при отсутствии навесов на электросварочным оборудованием и рабочим местом. При электросварочных работах в сырых местах сварщик должен находиться на настиле из сухих досок или на диэлектрическом ковре.

При любых отлучках с места работы сварщик обязан отключить сварочный аппарат. При электросварочных работах сварщик должен пользоваться индивидуальными средствами защиты: щиток, служащий для защиты лица и глаз, рукавицы для защиты рук. Одежда должна быть из несгораемого материала с низкой электропроводностью, кожаные ботинки.

При газосварочной работе запрещается хранить баллоны с кислородом в одном помещении с баллонами для горючих газов, а также с карбидом кальция, красками и маслами (жирами). Баллоны необходимо перемещать на специальных тележках, контейнерах и других устройствах, обеспечивающих устойчивое положение баллонов. Запрещается переноска баллонов на плечах и руках. Баллон с утечкой газа не должен применяться для работы или транспортирования.

Запрещается подогревать баллоны для увеличения давления. При проведении газосварочных работ запрещается курить и пользоваться открытым огнем на расстоянии менее 10 метров от баллонов с газом. Общая длинна шлангов должна быть не более 30 м. До присоединения шланга к горелке, его необходимо продуть рабочим газом. Каждые пять лет баллон для газа должен проходить освидетельствование. По окончанию работы вентили баллонов должны быть закрыты.

3.1 Охрана труда на предприятии и промышленная санитария

Сварочные работы относятся к категории работ с повышенной степенью опасности, что обуславливает повышенные требования к организации рабочих мест, обслуживанию аппаратуры и оборудования. Нарушение этих требований запрещено, чтобы избежать травматических случаев (отравлений газом, поражения электрическим током и др.). Сварщику при выполнении работ приходится работать при электрическом токе силой свыше 1000А и напряжении от 24 до 220/380В. Применяемые при газовой сварке, наплавке и резке металлов кислород и горючие газы подаются к месту работы в сжатом состоянии, чаще под высоким давлением. Горючие газы, смешиваясь с воздухом или кислородом, взрываются от искры любого происхождения, открытого пламени, нагретого тела и других тепловых импульсов. Широко используемый газ – ацетилен, даже если отсутствует кислород и воздух, взрывоопасен. Серьезная опасность возникает при получении ацетилена в специальных генераторах на месте производства работ.

Высокой химической активностью обладает кислород, находящийся под большим давлением в баллоне, особенно при соприкосновении с различными маслами и жирами – животными, минеральными и растительными. Резка металлов сопровождается выбросом из места резки большого количества расплавленного металла и шлака.

Все это делает место выполнения сварочных работ зоной повышенного риска.

При электросварочных работах проходы между однопостовыми источниками сварочного тока для сварки плавлением, резки, наплавки должны иметь ширину не менее 0,8 м., между многопостовыми источниками – не менее 1,5 м., расстояние от одно- и многопостовых источников сварочного тока до стены должно быть не менее 0,5 м.

Регулятор сварочного тока может размещаться рядом со сварочным трансформатором или над ним. Запрещается установка сварочного трансформатора над регулятором тока.

Запрещается производство электросварочных работ во время дождя и снегопада при отсутствии навесов над электросварочным оборудованием и рабочим местом.

При электросварочных работах в производственных помещениях рабочие места сварщиков должны быть отделены от смежных рабочих мест и проходов несгораемыми экранами (ширмами, щитами) высотой не менее 1,8 м.

При электросварочных работах в сырых местах сварщик должен находиться на настиле из сухих досок или на диэлектрическом ковре.

При электросварочных работах сварщик и его подручные должны пользоваться индивидуальными средствами защиты: защитной каской из токонепроводящих материалов, которая должна удобно сочетаться со щитком, служащим для защиты лица и глаз: защитными очками с бесцветными стеклами для предохранения глаз от осколков и горячего шлака при зачистках сварочных швов молотком или зубилом; рукавицами с крагами или перчатками, специальной одеждой из искростойких материалов с низкой электропроводностью, кожаными ботинками.

Причинами пожара при сварочных работах могут быть искры и капли расплавленного металла и шлака, неосторожное обращение с пламенем горелки при наличии горючих материалов вблизи рабочего места сварщика.

Для предупреждения пожаров необходимо соблюдать следующие противопожарные меры: нельзя хранить вблизи от места сварки огнеопасные или легковоспламеняющиеся материалы, а также производить сварочные работы в помещениях, загрязненных промасленной ветошью, бумагой, древесными отходами;

Запрещается пользоваться одеждой и рукавицами со следами масел, жиров, бензина, керосина и других горючих жидкостей; нельзя выполнять сварку и резку свежевыкрашенных масляными красками конструкций до полного их высыхания;

Запрещается выполнять сварку аппаратов, находящихся под электрическим напряжением, и сосудов, находящихся под давлением.

Нужно постоянно иметь противопожарные средства – огнетушители, ящики с песком, лопаты, ведра, пожарные рукава и следить за их исправным состоянием, а также содержать в исправности пожарную сигнализацию; после окончания сварочных работ необходимо выключить сварочный аппарат, а также убедиться в отсутствии горящих или тлеющих предметов.

1. Начальник цеха несет ответственность за штатное расписание:

-непосредственно обеспечивает руководство всей работы по выполнению планового задания, охране труда, техники безопасности, чтобы все рабочие места были укомплектованы рабочими единицами;

-производит анализы безопасности производственного оборудования и трудовых процессов, применяет меры к повышению уровня их безопасности;

-ежедневно в санитарном рапорте докладывает о нарушениях и устранении причин нарушений;

-проверяет работу по охране труда и принимает меры дисциплинарного взыскания;

-контролирует качество работы, проверяет состояние документации по инструкции рабочих в цехе;

-контролирует наличие и систематическое обновление наглядной аппаратуры по охране труда на участке и рабочих местах.

2. Заместитель начальника цеха:

-отвечает за выполнение заданий, запланированных работ по участкам, за технику безопасности, за исправность оборудования, следит за качеством и своевременным выполнением заданий.

— следит за исправностью источников питания;

— наблюдает за ходом сварки;

— отвечает за технику безопасности на своем участке, несет ответственность за выполнение запланированных работ.

· назначает разряд сварщикам;

· следит за качеством выполняемой работы;
следит за техникой безопасности непосредственно при выполнении какой- либо работы на участке;

· докладывает о проделанной в течение дня работе.

4.2 Расчет расхода сварочных материалов

Для расчета расхода электродов необходимо:

1) Взять пластину длинной L – 100 мм. и массой 250 г.

2) Затем необходимо узнать количество электродов в пачке и вес электродов; количество электродов в пачке составляет 90 штук, а вес электродов 400 г.

3) Рассчитываем массу одного электрода: 4000:90=45 г.

4) После этого наплавляем один электрод на пластину и взвешиваем ее, вес пластины стал 275г, то есть увеличился на 25г, а вес электрода равен 45г.

Вычисляем количество электродов, которые мы потратили на пластину длинной 100 мм.

45 г. = 1 эл. эл.

25 г. = эл.

Находим количество электродов, которое понадобится для сварки пластины длинной 1м.

1000мм.=эл.

100= 0,5·1000=500

= 5эл – на 1 м.

Это значит, что для сварки пластины длинной 1м. понадобится 5 электродов.

Дипломная работа выполнена по теме:

«Технология изготовления сварной конструкции «Рама»

В водной части дипломной работы охарактеризованы основные виды сварки плавлением, их сущность и способы применения. Представлено развитие сварочного производства в настоящее время.

В общей части представлена классификация сварочных постов в зависимости от вида сварки и вспомогательного оборудования, инструмент и принадлежности сварщика. Основные технологические операции ручной дуговой сварки раскрыты в специальной части. Мной указан и аргументирован выбор сварочных материалов, предназначенных для сварки конструкции, произведен расчет основных параметров сварки, предложены методы и способы контроля качества сварного соединения. Особое внимание уделено вопросам, касающихся техники безопасности, гигиены труда и производственной санитарии.

В экономической части мной произведен расчет сварочных материалов. Представлена схема структуры управления цехом.

Выполняя дипломную работу, закрепил теоретические и практические знания.

1. Виноградов В.С. «Оборудование и технология дуговой автоматической и механизированной сварки»

2. Маслов В.И. «Сварочные работы»

3. Попов В.А «Дуговая и газовая сварка сталей»

4. Чернышов Г.Г. «Сварочное дело»

5. Кобзев В.А., Коваленко В.В. «Сварочные трансформаторы»

источник

Дипломная работа на тему “Основы сварочных и газорезательных работ”

Пример дипломной работы студента 5 курса физико-технического факультета Днепропетровского национального университета им. О. Гончара

Введение
Глава 1. Основная часть
1.1 Материалы для сварочных работ
1.1.1 Стали
1.1.2 Электроды
1.1.3 Материалы для газопламенной сварки и резки
1.2 Оборудование и аппаратура для РДС и кислородной резки
1.2.1 Оборудование сварочного поста
1.2.2 Общие сведения об источнике питания сварочной дуги
1.2.3 Общие сведения об аппаратуре для кислородной резки
1.3 Инструмент, принадлежности и спецодежда сварщика
Глава 2.Технологическая часть
2.1 Подготовка металла под сварку
2.2 Выбор параметров режима сварки и резки
2.3 Техника и технология выполнения швов
2.4 Основные виды дефектов и причины их возникновения. Способы исправления дефектов в сварных соединениях
2.5 Принципиальные схемы и эскизы изделий
Назначение емкость для воды в виде бочки
2.6 Фотографии, слайды, иллюстрации изделий
2.7 Основные требования безопасности труда при производстве сварочных и газорезательных работ
2.8 Электробезопасность
2.9 Пожарная безопасность
Заключение
Список использованных источников

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Современный технически прогресс в промышленности неразрывно связан с совершенствованием сварочного производства. Сварка высокопроизводительный процесс изготовления неразъёмных соединений находит широкое применение при изготовлении металлургического, химического и энергетического оборудования, различных трубопроводах, в машиностроении, в производстве строительных и других конструкций.

Сварка – такой же необходимый технологический процесс, как и обработка металлов, литьё, ковка, штамповка. Большие технологические возможности сварки обеспечили её широкое применение при изготовлении и ремонте судов, автомобилей, самолётов, турбин, котлов, реакторов, мостов и других конструкций. Её применение способствует совершенствованию машиностроения и развитий ракетостроения, атомной энергетике, радиоэлектроники.

О возможности применения электрических искр для плавления металлов еще в 1753 г говорил академик Российской академии наук Г.Р. Рихман при исследованиях атмосферного электричества. В 1802 г профессор Санкт-Петербургской военно-хирургической академии В.В. Петров открыл явление электрической дуги и узнал возможные области её практического применения.

Однако потребовались многие годы совместных усилий учёных и инженеров, направленных на создание источников энергии, необходимых для реализации процесса электрической сварки металлов. Важную роль в создании этих источников сыграли открытия и изобретения в области магнетизма и электричества.

В 1882 году российский учёный – инженер Н.Н. Бенардос, открыл способ электродуговй сварки металлов неплавящимся угольным электродом. Им был разработан способ дуговой сварки в защитном газе и дуговая резка металлов. В 1888 г российский инженер Н.Г. Славянов предложил проводить сварку плавящимся металлическим электродам. С его именем связано развитие флюсов для воздействия на состав металла шва, создание первого электрического генератора.

На современном этапе развития сварочного производства в связи с развитием научно-технической революции резко возрос диагноз свариваемых толщин, материалов, видов сварки. В настоящее время сваривают материалы толщиной от несколько микрон (в микроэлектронике) до нескольких метров (в тяжелом машиностроении).

Сварка – экономически выгодный, высокопроизводительный и в значительной степени механизированный технологический процесс, широко применяемый практически во всех отраслях машиностроения.

Преимущество сварки перед этими процессами следующие:

Экономия металла – 10…30%и более в зависимости от сложности конструкций.

Уменьшение трудоёмкости работ, срока работ и их стоимость.

Возможность использовать наплавка для восстановления деталей.

Герметичность сварочных соединений.

Уменьшение производственного шума и улучшение условий труда.

Емкости металлические для жидкостей используются для стационарного хранения различных жидкостей, в том числе нефти и нефтепродуктов. Стальная ёмкость состоит из корпуса цилиндрической формы, на котором установлены технологические люка и патрубки. Прочность ёмкости под давлением обеспечивается путем сварки внутри металлических колец (диафрагмы) жесткости из вальцованного уголка.

По конструктивным особенностям, способу установки емкости, металлические резервуары бывают подземного и наземного исполнения.

Насколько важно качество изготовления и внешний вид емкости из металла на промышленном производстве?

Затраты на приобретение, монтаж емкостного оборудования чаще всего составляют около половины инвестиций в предприятие. Чтобы эти деньги, не ушли в никуда, необходимо позаботиться о покупке качественных емкостей из металла разного объема. Солидные предприятия практически никогда не покупают бывшие в употреблении (емкости БУ) или изготовленные в кустарных условиях промышленные резервуары.

Ведь от этого зависит не только бесперебойная работа предприятия, но и то, что первым бросается в глаза заказчикам – внешний вид производственных мощностей завода.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Глава 1. Основная часть

1.1 Материалы для сварочных работ

Изготовление ёмкостей производится из различных марок стали: Ст3Сп5, Ст3, С245, С255, С345, С390, 09Г2С, нержавеющая сталь 12Х18Н10Т, ASI 304. Толщина стенки металла – 4, 5 мм. Герметичность сварки емкостей обеспечивается двусторонним сварным швом. В зависимости от назначения емкостного оборудования имеются различные геометрические конфигурации, форма может быть открытой, без верхнего листа, или закрытой, с потолочным листом и люком. Многими украинскими производителями оборудования для пищевой промышленности, оборудования АЗС и нефтебаз, разрабатывается, осваивается изготовление новых видов металлических емкостей для пищевой, нефтеперерабатывающей промышленности.

Таблица 1 – Выбор материала конструкции и сварочных материалов

Название: Технология изготовления сварной конструкции «Рама»
Раздел: Промышленность, производство
Тип: дипломная работа Добавлен 11:44:34 18 сентября 2009 Похожие работы
Просмотров: 30862 Комментариев: 16 Оценило: 19 человек Средний балл: 3.8 Оценка: 4 Скачать
Марка: 10ХСНД (другое обозначение 10ХСНД-Ш)
Заменитель: 16Г 2АФ
Классификация: Сталь конструкционная низколегированная для сварных конструкций
Дополнение: Сталь хромокремненикелевая с медью
Продукция, предлагаемая предприятиями-рекламодателями: Нет данных.
Применение: Элементы сварных металлоконструкций и различные детали, к которым предъявляются требования повышенной прочности и коррозионной стойкости с ограничением массы и работающие при температуре от —70 до 450 °С,
Зарубежные аналоги: Известны

Таблица 2 – Химический состав в % материала 10ХСНД ГОСТ 19281 – 89

C Si Mn Ni S P Cr N Cu As
до 0.12 0.8 – 1.1 0.5 – 0.8 0.5 – 0.8 до 0.04 до 0.035 0.6 – 0.9 до 0.008 0.4 – 0.6 до 0.08
Примечание: Также хим. состав указан в ГОСТ 6713 – 9, ГОСТ 19282-73

Таблица 3 – Технологические свойства материала 10ХСНД

Свариваемость: без ограничений.
Флокеночувствительность: не чувствительна.
Склонность к отпускной хрупкости: малосклонна.

Таблица 4 – Механические свойства при Т=20 o С материала 10ХСНД

Сортамент Размер Напр. sT d5 y KCU Термообр.
мм МПа МПа % % кДж / м 2
Лист, ГОСТ 19282-73 5 – 9 540 400 19
Прокат, ГОСТ 6713-91 510-685 390 19 290

Таблица 5 – Физические свойства материала 10ХСНД

T E 10- 5 a 10 6 l r C R 10 9
Град МПа 1/Град Вт/(м·град) кг/м 3 Дж/(кг·град) Ом·м
20
100 1.97 40
200 2.01 39
300 1.95 38
400 1.88 36
500 1.8 34
600 1.69 31
700 1.56 29
800 1.35
900 1.25
T E 10- 5  10 6 C R 10 9
Механические свойства:
– Предел кратковременной прочности, [МПа]
sT – Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
d5 – Относительное удлинение при разрыве, [ % ]
y – Относительное сужение, [ % ]
KCU – Ударная вязкость, [ кДж / м 2]
HB – Твердость по Бринеллю, [МПа]
T – Температура, при которой получены данные свойства, [Град]
E – Модуль упругости первого рода, [МПа]
a – Коэффициент температурного (линейного) расширения (диапазон 20o – T), [1/Град]
l – Коэффициент теплопроводности (теплоемкость материала), [Вт/(м·град)]
r – Плотность материала, [кг/м 3]
C – Удельная теплоемкость материала (диапазон 20o – T), [Дж/(кг·град)]
R – Удельное электросопротивление, [Ом·м]
Свариваемость:
без ограничений – сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая – сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая – для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки – отжиг

1.1.2 Электроды

При ручной дуговой сварке плавящимся электродом сварка производится металлическим электродным стержнем, на поверхность которого путем окунания в жидкую массу или путем опрессовки под давлением наносится специальное электродное покрытие определенного состава и толщины. Электродный стержень с нанесенным на его поверхность слоем покрытия называют электродом.

По назначению различают электроды для сварки стали, чугуна, алюминия, меди. Обозначения электродов для сварки: углеродистых и низколегированных конструкционных сталей с sв >600 МПа — У; легированных конструкционных сталей с sв до 600 МПа — Л; легированных теплоустойчивых сталей — Т; высоколегированных и сталей с особыми свойствами — В; для наплавки поверхностных слоев с особыми свойствами — Н. В зависимости от механических свойств наплавленного металла применяются электроды 14 типов: Э42, Э46А, Э50…Э150. Тип электрода обозначается буквой Э с цифрой, указывающей гарантированное временное сопротивление разрыву наплавленного металла в КГс/мм2. Буква А после цифр обозначает повышенную пластичность наплавленного металла. По виду покрытия электроды разделяются на: А — с кислым покрытием (ОММ-5, АНО-2, СМ-5, ЦМ-7, МЭЗ-04 и др.), содержащим оксиды железа, марганца, кремния, иногда титана. Эти электроды обеспечивают стабильное горение дуги на переменном и постоянном токе. Металл шва отличается повышенной степенью окисления, плотностью и пластичностью; Б — с основным покрытием (УОНИ-13/45, УОНИ-13/5БК, УОНИ-В/85, АНО-Т, ОЗС-5, ДСК-50, СН-11, УП-1/45 и др.), содержащим мрамор — СаСОз, плавиковый шпат — CaF2, кварцевый песок, ферросплавы. Наплавленный металл имеет большую прочность на ударный изгиб, малую склонность к старению и появлению трещин. В зависимости от того, в каком пространственном положении выполняется сварка, электроды подразделяются:

Для сварки во всех положениях с условным обозначением – 1; для сварки во всех положениях, кроме вертикального сверху вниз – 2; для положений нижнего, горизонтального на вертикальной плоскости и вертикального снизу вверх – 3; для нижнего и нижнего «в лодочку» – 4.

Для сварки данной конструкции которая изготавливается из углеродистой стали Ст3сп применяются электроды марки МР3 типа Э46.

Электроды с рутиловым – основным покрытием предназначены для сварки ответственных конструкций из углеродистых сталей. Сварка во всех пространственных положениях на переменном и постоянном и постоянном токе обратной полярности. Производительность для диаметра 4 мм) 7,5, расход электрода на 1 кг наплавленного металла 1,7 кг.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

1.1.3 Материалы для газопламенной сварки и резки

Используется кислород в баллонах. Пламя, обладающее высокой температурой, необходимое для газопламенной сварки, образуется при сгорании горючих газов или паров в смеси с техническим кислородом. При нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса. Но при низких температурах газообразный кислород может перейти в жидкое состояние и даже превратиться в твердое вещество. Сам кислород не токсичен, не горит, но активно поддерживает горение других веществ, при котором выделяется большое количество тепла.

Таблица 7 – Величины давления в баллонах при температурах от -50 до +30°С

Температура газа, °С Давление в баллоне при первоначальном давлении 15Мпа ±0, 5 при20°С Давление в баллоне при
первоначальном давлении 20Мпа ±0,1 при20°С
-50 9,3 12,3
-40 10,2 13,5
-30 11,1 14,6
-20 11,9 15,8
-10 12,7 16,9
0 13,5 17,9
+10 14,3 19,0
+20 15,0 20,0
+30 15,7 21,0

Ацетилен (С2Н2) – химическое соединение углерода и водорода, в нормальном состоянии представляющее собой бесцветный горючий газ с резким запахом. Ацетилен легче воздуха и при температуре 20°С один его м³ имеет массу 1,09 кг. Низкая температура ацетилена (240 – 630°С) делает этот газ взрывоопасным в соединении с кислородом. Так, при атмосферном давлении смесь ацетилена с воздухом становится взрывоопасной при содержании ацетилена 2,2%. Ацетилен токсичен и при вдыхании его вызывает головокружение, тошноту и даже отравление.

Карбид кальция – кристаллическое вещество (СаС2) темно-серого или темно-коричневого цвета с удельным весом от 2,3 до 2,53 г/см³. При взаимодействии с парами воды, находящимися в атмосферном воздухе, имеет характерный (чесночный) запах. При взаимодействии с водой карбид кальция разлагается с образованием ацетилена и гашеной извести. Из 1 кг химически чистого карбида кальция теоретически можно получить 372 дм³ ацетилена, однако наличие примесей снижает этот показатель до 280 дм³. Процесс разложения карбида кальция в воде происходит по следующей реакции:

Карбидная пыль при смачивании водой разлагается почти мгновенно, поэтому применять ее в ацетиленовых генераторах невозможно. Для этого используют кусковый карбид кальция, загружая им ацетиленовый аппарат. В зависимости от размеров кусков и сортности карбида кальция получают фактический выход ацетилена, отраженный в таблице 4.

Таблица 8 – Выход ацетилена и карбида кальция

Размеры куска, мм Условное обозначение размеров куска Выход ацетилена (не менее), л/кг
1 сорт 2 сорт
2-8 2/8 255 235
8-15 8/15 265 245
15-25 15/25 275 255
25-80 25/80 285 265
Смешанных размеров 275 265

Пропан-бутановые смеси состоят из пропана (C3H8) с примесью бутана (С4Н10) в количестве от 5 до 30%. Их получают при переработке нефти или добыче природного газа. Для сварочных работ эти смеси поставляется в баллонах в сжиженном состоянии. Из сжиженного состояния пропан-бутановая смесь переходит в газообразное при температуре -40°С при нормальном атмосферном давлении или при нормальной температуре, но при пониженном давлении.

Водород — представляет собой газ без цвета и запаха. Его получают в специальных генераторах воздействуя серной кислотой на железную стружку и цинк. Этот горючий газ в смеси с кислородом образует взрывчатую смесь, называемую гремучим газом. Хранят и транспортируют водород в сжиженном состоянии, в которое он переходит при температуре -253°С. Водород в газообразном состоянии легко проникает через любые неплотности, поэтому баллоны, трубопроводы и запорная арматура должны отвечать высоким требованиям герметичности. При сгорании водорода пламя практически не светится и не имеет четких границ.

В качестве присадочных материалов при газопламенной сварке применяют сварочную проволоку или литые прутки, которые по своему химическому составу должны быть близкими к основному материалу. Нельзя в качестве присадочных материалов применять случайную проволоку, так как это скажется на качестве сварного соединения.

Присадочные материалы должны отвечать следующим требованиям: температура их плавления должна быть несколько меньше температуры плавления основного материала химический состав должен соответствовать химическому составу основного материала поверхность должна быть ровной и чистой, без окалины, ржавчины, масла и жировых отложений
плавление должно происходить ровно, без разбрызгиваний и испарений
после кристаллизации наплавленный металл должен обладать хорошей плотностью без раковин, пор, шлаковых включений и т.д.

Применение в качестве присадочного металла различных полосок недопустимо, так как это влечет за собой неравномерную ширину сварочного шва и его неоднородность, что сказывается на качестве сварного соединения. Вместо сварочной проволоки допускается применение пруткового материала, прошедшего калибровку. При газовой сварке цветных металлов и нержавеющих сталей в виде исключения допускается применение полосок, своим химическим составом сходных с основным металлом.

Стальная проволока, предназначенная для сварки, поставляется в бухтах

с обязательной маркировкой в виде бирок, на которых указаны: марка провода, ее диаметр, покрытие и т.д. Низкоуглеродистая и легированная проволока может иметь омедненную поверхность, предназначенную для защиты от атмосферного воздействия. Размеры и масса мотков проволоки приведены в таблице 9.

Таблица 9 – Размеры и масса сварочной проволоки

Диаметр проволоки, м Внутренний диаметр мотка, мм Масса мотка проволоки (неменее), кг
Из углеродистой стали Из легировнной стали Из высокорелегированной стали
0,3-0,8 150-350 2 2 1,5
1,0-1,2 250-400 15 10 6
1,4-2,0 250-600 20 15 8
2,5-3,0 400-700 30 20 10
4,0-6,0 500-700 30 20 10
6,5-8,8 500-700 30 20 15

Флюсы – в газопламенной сварке и пайке используют для раскисления расплавленного металла и удаления из сварочной ванны образующихся окислов и неметаллических включений. Под действием высоких температур флюсы связывают оксиды химическим путем с образованием легкоплавких соединений или растворяют их в сварочной ванне, а образующиеся при этом шлаки всплывают. Образовавшаяся на поверхности сварочной ванны шлаковая пленка защищает металл от окисления при контакте с атмосферным кислородом.

1.2 Оборудование и аппаратура для РДС и кислородной резки

1.2.1 Оборудование сварочного поста

Рабочее место называется сварочным постом, служащим для выполнения сварных работ оборудованное всеми необходимыми для производства сварных работ сварочный пост укомплектован: источником питанья, электропроводом, а также различным инструментом.

Сварочный пост для изготовления цилиндрической емкости, включает в себя:

  1. Ящик для ключей
  2. Трансформатор или преобразователь
  3. Резиновый коврик
  4. Освещение
  5. Спецодежда
  6. Пенал для электродов
  7. Ящик для огарков
  8. Рулетка
  9. Болгарка с дисками
  10. Щётка по металлу
  11. Вытяжка

Рабочее место не должно быть захламлено поскольку это предаёт неудобства сварщику и можно получить травму поэтому необходимо содержать рабочие место в чистоте.

Для изготовления цилиндрической горизонтальной емкости необходимо использовать специальное оборудованье и инструменты они включают в себя:

  1. Болгарку, диски 2 типов для резки и шлифовки металла
  2. Линейка для ровной разметки
  3. Молоток для выравнивания швы и отбития шлака
  4. Мел для разметки под резку металла
  5. Секач для отбивки шлака
  6. Уголок для выполнения ровных углов
  7. Кабеля
  8. Держак

1.2.2 Общие сведения об источнике питания сварочной дуги

Питание постов сварочным током может быть централизованным. В цехе устраивают центральный машинный зал, оснащенный мощными сварочными аппаратами. От которых проводят медные шины вдоль колонн для подачи сварочного тока к 20-30 постам. Посты оборудуют распределительный пусковой аппаратурой. Подсоединяемой к шине, и балластным реостатом для регулирования сварочного тока.

По расчету напряжения дуги и силы сварочного тока выбираем сварочное оборудование. Источник питания и электродержатель. В качестве источника питания выбираем сварочный трансформатор ТД-306 УЗ, а электродержатель ЭД-20.

По силе сварочного тока выбираем электродержатель, см. таблицу 10.

Таблица 10 – Электродержатель ЭД – 20

Показатель ЭД-20
Сварочный ток, А

Максимальный сварочный ток, А,

Сечение одножильных медных сварочных проводов, прикрепляемых к электродержателям, мм2, при:

1.2.3 Общие сведения об аппаратуре для кислородной резки

Бензорезы – аппарат для кислородной резки металлов, работающий на жидком горючем (керосине, бензине). Резка производится струей кислорода, направляемой на подогретый металл. Бензорез отличается повышенной пожарной опасностью, но благодаря ряду преимуществ (использование жидкого горючего, удешевление процесса резки металлов и др.) широко применяется в промышленности.

БЕНЗОРЕЗ, керосинорез, аппарат для кислородной резки металлов, работающий на жидком горючем (керосине, бензине).

Рисунок 1 – Бензорез: 1 -резак; 2 – бак для горючего.

Состоит из бака для горючего, режущей горелки (резака) и шлангов для подачи горючего и кислорода. В бак встроен ручной воздушный насос, создающий избыточное давление, под действием которого горючее подводится к резаку. Шланг для подачи горючего изготовлен из спец. резины (дюрита), не растворяющейся в керосине и бензине. Пары горючего смешиваются с кислородом и поступают в пламя резака, подогревающее металл.

Резка производится струёй кислорода, направляемой на подогретый металл.

1.3 Инструмент, принадлежности и спецодежда сварщика

Спецодежда сварщика изготавливается из плотного брезента или сукна. Она не должна иметь открытых карманов. Обувь должна иметь глухой верх рукавицы сварщика должны изготавливаться из кожи, плотного брезента или асбестовой ткани. При работе в закрытых сосудах пользование диэлектрическими калошами и резиновыми ковриками, испытанными на электрический пробой в соответствии с правилами техники безопасности является обязательным.

При сварке крупных деталей сварщик работает непосредственно у изделия или на нем. В этом случае рабочее место ограждается переносными щитами или ширмами, а инструмент и электроды находятся в сумке или в ящике. Для выполнения сварочных работ внутри конструкций, например при изготовлении котлов, емкостей, судов и т.д., рабочее место должно быть оборудовано резиновым ковриком, кошмой или деревянным полом и иметь приточную и вытяжную вентиляцию. При сварке внутри замкнутых сосудов или в местах с плохой вентиляцией сварщики применяют часто маски и щитки с подачей в зону дыхания чистого воздуха. При сварке на морозе к щитку подается воздух, подогретый до температуры 20 – 25° С. Сварка металлоконструкций при монтаже на открытом воздухе требует, чтобы рабочее место было защищено от атмосферного воздействия (солнце, ветер, снег), ухудшающего условия работы сварщика.

Для защиты лица сварщика от воздействия лучей сварочной дуги и брызг расплавленного металла применяют щитки, шлемы (маски). Щитки и шлемы изготавливаются из фибры или специально обработанной фанеры. Вес их не должен превышать 0,6 кг. В щиток или маску вставляются светофильтры, удерживаемые рамкой размером 120 х 60 мм.
Защитные светофильтры имеют различную плотность. Наиболее темное стекло имеет марку ЭС-500 и применяется при сварке на токах до 500 А, среднее ЭС-ЭОО – для сварки на токах до 300 А, более светлое стекло ЭС-100 для сварки на токах 100 А и менее. Снаружи светофильтр защищен от брызг прозрачным стеклом, которое обычно сменяют 3-4 раза в месяц.

Инструмент сварщика – это совокупность орудий, употребляемых им в “производстве, а именно: сварочный инструмент (электрододержатели, горелки и др.), инструмент для зачистки шва и свариваемых кромок, для подгонки соединяемых деталей, инструмент для наладки сварочного оборудования и приспособлений и мерительный инструмент.

Для зачистки шва и свариваемых кромок в сварочном производстве применяются: молоток – шлакоотделитель, представляющий собой инструмент с острыми и узкими рабочими поверхностями. Он предназначен для удаления шлаковой корки, особенно с угловых швов или швов, расположенных в узкой, глубокой разделке между кромками;

проволочные щетки используются для зачистки кромок перед сваркой и для удаления с поверхности шва остатков шлака. Щетки могут быть плоскими (широкими или узкими) или цилиндрическими (в виде кисти) для зачистки швов, расположенных в узком зазоре.

Наряду с ручным для зачистки применяется и механизированный инструмент. Ручные шлифовальные машинки с пневматическим или электроприводом. Зачистка кромок перед сваркой выполняется шлифовальным кругом, закрепленным на шпинделе двигателя или в ручном приспособлении. В последнем случае шлифовальный круг вращается при помощи гибкого вала, что облегчает условия работы сварщика.

Для удаления с металлических поверхностей непрочно сцепленной окалины, брызг, краски и для других работ применяются также проволочные щетки (дисковые или торцовые).

Пневматические молотки предназначены для зачистки сварных швов от шлака и брызг, для удаления дефектных участков шва и т. п.

К инструменту сварщика относят слесарный инструмент для подгонки соединяемых деталей (вилки, струбцины, кувалды), для кантовки горячих деталей, а также инструмент для наладки сварочного и технологического оборудования

Глава 2.Технологическая часть

2.1 Подготовка металла под сварку

Подготовка металла под сварку заключается в очистке, разметке, резке и сборке. Правка в моем узле не применяется. Очистка применяется для того, чтобы очистить металл от ржавчины, краски, шлака, и.т.д.

Перенос размеров детали на натуральную величину с чертежа на металл называют разметкой. При этом пользуются инструментом: рулеткой, линейкой, угольником и чертилкой. Проще и быстрее разметка выполняется шаблоном, изготовляемый из тонкого металлического листа.

При разметке заготовок учитывается укорачивания их в процессе сварки конструкции. Поэтому предусматривается припуск из расчета 1мм на каждый поперечный стык и 0,1-0,2мм на 1мм продольного шва.

При подготовке детали к сварке применяют преимущественно термическую резку. Механическую резку целесообразно выполнять при заготовке однотипных деталей, главным образом с прямоугольным сечением.

Часто кислородную резку применяют, особенно машинную, сочетают со снятием угла скоса кромок.

Очистка металла от пыли, ржавчины, окалины и т.д. является важной технологической операцией, предшествующей запуску его в производство. Очистку целесообразно проводить после правки листов, поскольку в процессе правки окисные пленки интенсивно разрушаются и отслаиваются, что облегчает последующую очистку.

Очистку чаще всего осуществляют на дробе- и пескоструйных аппаратах. Кроме этого существует способ химической очистки (травления).

Для очистки на дробеметной установке лист в вертикальном положении на тележке подают в камеру, на стенках которой размещены дробеметные аппараты, выбрасывающие с большой скоростью стальную или чугунную дробь размером 0,6-0,8 мм. Ударяясь о поверхность металла, дробь сбивает загрязнения и очищает ее. Возникающий под влиянием дробеочистки наклеп обычно незначителен и практически не влияет на механические свойства металла. Конструкция дробеструйных установок рассчитаны на многократное использование дроби. Образующаяся пыль удаляется из камеры отсасывающей системой. Примерная производительность установки 200 м 2 в час.

Пескоструйная очистка основана на абразивной обработке очищаемой поверхности струей сжатого воздуха со взвешенными в нем твердыми частицами песка. По санитарным нормам пескоструйная очистка в цеховых условиях возможна только в специальных камерах.

Химическую очистку производят на механизированных линиях, представляющих собой ряд последовательно расположенных камер. В каждой из них осуществляют одну определенную операцию процесса очистки: подогрев, травление, промывку, нейтрализацию, пассирование и т.д.

Трубы очищают от загрязнений по наружной и внутренней поверхностям на очистных станках и механизированных линиях.

На ЗиО очистка наружной поверхности труб производится на дробеструйной установке.

После того как металл выправлен, очищен и тщательно вымыт, производится разметка той поверхности, которую предстоит обработать.

Что значит разметить заготовку? Это значит нанести на нее разметочные линии или риски, указывающие границы, до которых необходимо ее обрабатывать, чтобы она превратилась в необходимый вам элемент. Если заготовка размечена неправильно, она просто не встанет на свое место.

Металл не бумага и не дерево, по которому удобно рисовать карандашом: сего гладкой, твердой поверхности легко стираются как грифельные линии, так и меловые. Для того чтобы линии разметки прочно держались на металле и не стирались, поверхность, которую предстоит обрабатывать, нужно предварительно окрасить.

2.2 Выбор параметров режима сварки и резки

Сварка выполняется во всех пространственных положениях, сила тока зависит, от толщины метала и от пространственного положения.

Таблица 11 – Выбор параметров режима сварки

S м. 1-2 3 4-5 6-8 9-12 13-15 16…
D эл. 1.5-2 3 4 4 4-5 5 6

K=для сварки в нижнем положении 1

K= для сварки в горизонтальном 0.8

K=для сварки в потолочном положении 0.9

Простая прямолинейная резка – это одна из самых часто используемых технологических операций, применяемых для нарезки заготовок простых изделий и соединительных элементов (воротников, прямых отводов, реек, шин), а также для выравнивания кромок листового материала.

Разрезаемый металл предварительно нагревается подогревающим пламенем резака, которое образуется в результате сгорания горючего газа в смеси с кислородом. При достижении температуры воспламенения металла в кислороде, на резаке открывается вентиль чистого кислорода (99-99,8%) и начинается процесс резки. Чистый кислород из центрального канала мундштука, предназначенный для окисления разрезаемого металла и удаления оксидов, называют режущим в отличие от кислорода подогревающего пламени, поступающего в смеси с горючим газом из боковых каналов мундштука.

Струя режущего кислорода вытесняет в разрез расплавленные оксиды, которые, в свою очередь, нагревают следующий слой металла, способствуя его интенсивному окислению и т. п. В результате разрезаемый лист подвергается окислению по всей толщине, а расплавленные оксиды удаляются из зоны резки под действием струи режущего кислорода.

Поверхность разрезаемого листа следует очистить от окалины, краски, масла, ржавчины и грязи. Особое внимание уделяется очистке поверхности листа от окалины, поскольку она препятствует контакту металла с пламенем и струей режущего кислорода. Для этого требуется незначительный прогрев поверхности стали подогревающим пламенем резака, в результате которого окалина отскакивает от поверхности. Прогрев следует выполнять узкой полосой по линии предполагаемого реза, перемещая пламя со скоростью, приблизительно соответствующей скорости резки.

Перед кислородной резкой металл нагревается с поверхности в начальной точке реза до температуры его воспламенения в кислороде. После пуска струи режущего кислорода и начала процесса окисления металла по толщине листа резак перемещают по линии реза.

Как правило, прямолинейная кислородная резка стальных листов толщиной до 50 мм выполняется вначале с установкой режущего сопла мундштука в вертикальное положение, а затем с наклоном в сторону, противоположную направлению резки (обычно на 20-30є). Наклон режущего сопла мундштука в сторону ускоряет процесс окисления металла и увеличивает скорость кислородной резки, а, следовательно, и ее производительность. При большей толщине стального листа резак в начале резки наклоняют на 5є в сторону, обратную движению резки.

Чтоб сварить бочку надо сначала на резать 4 листа размер 825мм на 2040мм, сворачиваем лист кругом и свариваем вместе 2 края, каждого листа потом эти четыре круга свариваем в месте только чтоб швы были в разных местах свариваем по кругу ширина шва должна перекрывать ширину разделки на 1,5-2 мм. После каждого раза на до на 15 мм больше брать от места где ты варил. После каждого прохода обязательна зачищать поверхность предыдущего шва. После по середине одного из круга с верху вырезают круг и привариваем люк когда уже бочка будит готова в низу приваривают ножки.

2.3 Техника и технология выполнения швов

Диаметр труб от 50 до 1200мм. Толщи на стенки от 2,5 мм до 25 и более, сварку ведут возможно короткой дугой, стыки труб диаметром 219 мм и более сваривают одновременно два сварщика, ширина шва должна перекрывать ширину разделки на 1,5-2 мм в каждую сторону, облицовочный шов должен иметь плавное сопряжение с поверхностью трубы.

Таблица 12 – Технологическая карта изготовления конструкции

Наименование операции Содержание операции и требования Оборудование и инструменты
1 Отчистка полости труб и заготовок от грязи, ржавчины, масла Зачистка металла осуществляется для удаления заусениц с кромки деталей после штамповки, а также для удаления с поверхности. Кромок окалин, и шлаков. После кислородной резки,Грязи и ржавчины УШМ AG90111 со шлиф насадкой зубило молоток
2 Разметка заготовок по чертежам Разметка представляетсобой нанесение на металразметочных рисок выполняется с необходимыми припускомкоторый снимается при последующей обработки.служит для более точной сборки конструкции. Разметочный стол металлическая рулетка, металлическая чертилка, угольник.
3 Резка заготовок при помощи УШМ Резка заготовок осуществляется. При помощи УШМ по заранее Наложенным рискам УШМ AG90111с диском по металлу
4 Подготовка кромок
5 Сборка деталей
6 Сварка Сварка деталей конструкции проходит

После выполнения всех предыдущих операций и внимательной перепроверки всей соборной конструкции

Сварочный выпрямитель ВДУ-504электроды УОНИ-1365
7 Контроль качества Нормативная техническая документация.

Визуальный осмотр. Радиационноепросвечивания швов служат специальные аппараты (РУП-150-1, РУП-120-5-1 и др.)

Швы по длине и сечению выполняют на проход и обратно ступенчатым способом. Сущность способа сварки на проход заключается в том, что шов выполняется до конца в одном направлении.

Обратно – ступенчатый способ состоит в том, что длинный предполагаемый к исполнению шов делят на сравнительно короткие ступени.

По способу заполнения швов по сечению различают однопроходные, однослойные швы, многопроходные и многослойные. Если число слоев равно числу проходов дугой, то такой шов называют многослойным.

Многослойные швы чаще применяют в стыковых соединениях, многопроходные- в угловых и тавровых. Для более равномерного нагрева металла шва по всей его длине выполняют двойным слоем, секциями, каскадом и блоками, причем в основу всех этих способов положен принцип обратноступенчатой сварки.

В конце шва нельзя сразу обрывать дугу и оставлять на поверхности металла шва кратер. Кратер может вызвать появлений трещины в шве в следствии содержания в нем примесей, прежде всего, серы и фосфора. При сварке низкоуглеродистой стали кратер заполняют электродным металлом или выводят его в сторону на основной металл.

При сварке стали, склонной к образованию закалочных микроструктур, вывод кратер в сторону недопустим ввиду возможности образования трещин.

Не рекомендуется заваривать кратер за несколько обрывов и зажиганий дуги ввиду образований оксидных загрязнений металла.

Лучшим способом окончания шва будет заполнения кратера металлом в следствии прекращения поступательного движения электродов в дугу и медленного удлинения дуги до ее обрыва.

Основными причинами возникновения сварочных деформаций и напряжений являются неравномерное нагревание и охлаждение изделия, литейная усадка наплавленного металла и структурные превращения в металле шва.

Неравномерное нагревание и охлаждение вызывают тепловые напряжения и деформации. При сварке происходит местный нагрев небольшого объема металла, который, расширяясь, воздействует на близлежащие менее нагретые слои металла. Напряжения, возникающие при этом, зависят главным образом от температуры нагрева, коэффициента линейного расширения и теплопроводности свариваемого металла. Чем выше температура нагрева, а также чем больше коэффициент линейного расширения и ниже теплопроводность металла, тем большие тепловые напряжения и деформации развиваются в свариваемом шве.

Литейная усадка вызывает напряжения в сварном шве в связи с тем, что при охлаждении объем наплавленного металла уменьшается. Вследствие этого в близлежащих слоях металла возникают растягивающие силы. Чем меньше количество расплавленного металла, тем меньшие возникают напряжения и деформации. Структурные превращения вызывают растягивающие и сжимающие напряжения в связи с тем, что они в некоторых случаях сопровождаются изменением объема свариваемого металла. Например, у углеродистых сталей при нагреве происходит образование аустенита из феррита – этот процесс сопровождается уменьшением объема. При больших скоростях охлаждения высокоуглеродистых сталей аустенит образует мартенситную структуру, менее плотную, чем аустенит; этот процесс сопровождается увеличением объема. При сварке низкоуглеродистой стали напряжения, возникающие от структурных превращений, небольшие и практического значения не имеют. Стали, содержащие более 0,35% углерода, и большинство склонных к закалке легированных сталей дают значительные объемные изменения от структурных превращений. Вследствие этого развивающиеся напряжения оказываются достаточными для возникновения трещин в шве.

Работу по контролю качеству сварных работ проводят в три этапа:

  1. Предварительный контроль, проводят до начал сварочных работ
  2. Контроль в процессе сборки и сварки (пооперационной)
  3. Контроль качества готовых сварных соединений

Предварительный контроль включает в себя: проверку классификации сварщика, дифектоскопистов и ИТР, руководящих работами по сварке, сварке и контролю; проверку качества основного металла сварных материалов, заготовок поступающих на сборку, состояния сварочной аппаратуры. В процессе изготовления (пооперационный контроль) проверяют качество подготовки кромок и сборку, режимы сварки, порядок выполнения швов, температуру окружающей среды и сварного металла, внешний вид шва, его геометрические размеры, постоянно наблюдают за исправностью сварочной аппаратуры.

Последняя контрольная операция – проверка качества сварки в готовом изделии. Для этой цели существуют следующие виды контроля: внешний осмотр и измерение сварных соединений, испытание на плотность, просвечивание рентгеновским или гамма-лучами, контроль ультразвуком, магниевые методы контроля, люминесцентный метод контроля, металлографические исследования, механические испытания. Виды контроля качества сватаных соединений выбирают в зависимости от назначения изделия и требований, которые предъявляют к этому изделию соответствии с техническим условием или ГОСТом.

Дефекты в сварных соединениях могут быть вызваны плохим качеством сварных металлов, неточной сборкой и подготовкой стыка под сварку, нарушением технологии сварки, низкой классификацией сварщика и другим причинам. Задача контроля качества соединений – выявление возможных причин появления брака и его предупреждение.

Во избежание ошибочных выводов следует иметь в виду, что при температуре воды в сосуде ниже температуры воздуха в помещении возможно полное запотевание всей поверхности металла испытуемого изделия. Кроме того, уменьшение испытательного давления не всегда указывает на наличие дефектов, а может быть вызвано неплотностями в нагнетательной системе, присоединительной арматуре, заглушках.

Недостатками этого способа контроля являются необходимость в источниках водоснабжения и трудности, возникающие при испытаниях в зимнее время на открытом воздухе.

Вертикальные резервуары для хранения нефти и нефтепродуктов, газгольдеры и другие крупные емкости испытывают наливом воды.

До испытания сварные швы тщательно обтирают ветошью или обдувают воздухом до получения сухой поверхности. Затем емкость заполняют водой и наблюдают за сварными швами и падением уровня воды. Продолжительность испытания, необходимого для осмотра всех швов, составляет от 2 до 24 ч в соответствии с техническими условиями. Если в течение этого времени не обнаружено пропусков воды и уровень ее не снизился, емкость считают выдержавшей испытание.

Категорически запрещается обстукивать сварные швы резервуаров, газгольдеров и других крупных емкостей в процессе испытания во избежание их разрушения. Испытание проводится при температуре окружающего воздуха не ниже 0° С и температуре воды не ниже +5° С.

Когда швов немного, их непроницаемость определяют, полива одну сторону шва водой из брандспойта под давлением 1—10 кгс/см2, устанавливаемым техническими условиями. Одновременно осматривают противоположную сухую сторону шва.

Проницаемость сварных швов и места дефектов определяют, следя за появлением течи, просачиванием воды в виде капель, запотеванием поверхности шва или вблизи его.

Вакуумный контроль сварных швов применяют в тех случаях, когда применение других способов почему-либо исключено. В частности, этот метод широко применяется при контроле сварных днищ резервуаров, газгольдеров, цистерн, гидроизоляционных ящиков. Он позволяет обнаружить отдельные поры диаметром до 0,004— 0,005 мм, а производительность при его использовании достигает 40—60 м сварных швов в час.

Вакуум создают при помощи переносной вакуум-камеры, которую устанавливают на наиболее доступной стороне проверяемого участка шва.

В зависимости от формы контролируемого изделия и типа соединения применяются плоские, угловые и кольцевые вакуум-камеры.

Механизированная вакуум-тележка укомплектована набором переносных вакуум-камер, позволяющих контролировать различные типы сварных соединений во всех пространственных положениях.

Контроль швов газоэлектрическими течеискателями. В настоящее время применяют два вида газоэлектрических течеискателей: гелиевые и галоидные.

2.4 Основные виды дефектов и причины их возникновения. Способы исправления дефектов в сварных соединениях.

  1. Подрезы. Сварка после зачистки.
  2. Не провар в корне шва, Утяжка. Выборка дефектного участка с последующей подваркой.
  3. Чрезмерное усиление шва. Зачистка абразивным инструментом.
  4. Катет недостаточного размера. Сварка после зачистки
  5. Наплыв. Зачистка абразивным инструментом; при необходимости подварка.
  6. Незаплавленный кратер. Подварка после предварительной зачистки.
  7. Западание между валиками. Подварка после предварительной зачистки.
  8. Неравномерная ширина шва. Зачистка абразивным инструментом и подварка.
  9. Наружная и продольная трещина, поры, шлаковые включения. Вырубка дефектного участка с последующей подваркой.

Сварные соединения и швы ответственных изделий и соoружений дoлжны быть непрoницаемыми для рaзличных жидкостей и газов. Неплотности в швах снижaют их пpочность пpи вибpационных нагpузках, уменьшaют коррозионную стойкость, вызывaют утечку хрaнимых и трaнспортируемых пpодуктов и создaют недопуcтимые уcловия экcплуатации сварных конструкций.

Контроль непроницаемости сварных соединений проводят в соответствии с ГОСТ 3242-79, включая следующие виды испытаний: керосином, обдувом, аммиаком, воздушным давлением, гидравлическим давлением, наливом и поливом.

Кроме этого, непроницаемость сварных соединений определяют вакуумным методом и газоэлектрическими течеискателями.

Перед проведением испытаний должны быть устранены все дефекты, выявленные внешним осмотром.

Испытание керосином основано на способности многих жидкостей подниматься по капиллярным трубкам, какими в сварных швах являются сквозные поры и трещины. Керосин обладает высокой смачивающей способностью и сравнительно малой вязкостью, что обеспечивает большой эффект этого способа контроля. Например, в отличие от воды (полярная жидкость) керосин под действием поверхностных сил проникает в мельчайшие (10 -3 — 2,10 -4 мм) неплотности в металле.

Испытание сварных соединений керосином проводят следующим образом. После внешнего осмотра простукивают молотком или подвергают вибрации основной металл на расстоянии 30—40 мм от шва и тщательно очищают сварное соединение от шлака, ржавчины, масла и других загрязнений. Такое простукивание или вибрация способствует лучшему удалению шлака и развитию несквозных дефектов в сквозные.

Затем с помощью пульверизатора сварные швы покрывают меловым раствором (350—450 г молотого мела или каолина на 1 л воды) с той стороны, которая более доступна для осмотра.

После высыхания мелового раствора другую сторону шва обильно смачивают керосином и выдерживают в течение определенного времени.

Исходя из экспериментальных данных Института электросварки им. Е. О. Патона, Всесоюзного научно-исследовательского института строительства трубопроводов и ряда монтажных организаций время выдержки под керосином обычно устанавливают не менее 12 ч при окружающей температуре выше 0° и не менее 24 ч — при температуре ниже 0°.

Ввиду того что при повышении температуры вязкость керосина уменьшается и скорость проникания его через неплотности шва увеличивается, для сокращения времени контроля рекомендуется швы перед испытанием нагревать до температуры 60—70° С. В этом случае время выдержки под керосином сокращается до 1,5—2 ч. Керосин наносят в процессе испытания 3—5 раз.

Соединения внахлестку, у которых один шов сплошной, а второй прерывистый, опрыскивают струей керосина под давлением co стороны прерывистого шва. Соединения внахлестку, сваренные сплошным швом с обеих сторон, испытывают керосином путем нагнетания его под давлением в межнахлесточное пространство через специально просверленное отверстие.

О наличии пор, свищей, сквозных трещин и непроваров свидетельствуют жирные желтые точки или полоски керосина на меловом слое, которые с течением времени расплываются в пятна. Поэтому необходимо тщательно следить за появлением первых точек или полосок и своевременно отмечать границы дефектных участков.

Обнаруженные дефекты устраняют, после чего сварной шов подвергают повторному контролю.

Для лучшего наблюдения за керосиновыми пятнами применяют керосин, окрашенный в красный цвет краской «Судан-III» в количестве 2,5—3 г на литр.

Эффективность контроля непроницаемости сварных швов с помощью керосина можно повысить, применяя дополнительно продувку швов сжатым воздухом под давлением 3—4 кгс/см 2 , разрежение атмосферного воздуха с меловой стороны шва при помощи специальных камер, вибрацию швов. Все эти меры ускоряют проникание керосина через неплотности.

С помощью керосина выявляют не только сквозные, но и поверхностные дефекты. Для этого поверхность контролируемого сварного соединения после тщательной очистки обезжиривают бензином или ацетоном и обильно смачивают окрашенным керосином. По истечении 15—20 мин керосин вытирают или смывают 5%-ным водным раствором кальцинированной соды с последующим просушиванием. Затем на поверхность сварного соединения при помощи пульверизатора наносят тонкий слой разведенного в воде мела (или каолина).

Когда мел высохнет, изделие около шва обстукивают молотком, а сам шов прогревают горячим воздухом. При этом керосин, задержавшийся ранее на дефектных участках (в случае их наличия), просачивается на меловую краску в виде пятен и полосок, по которым судят об имеющихся дефектах.

При испытании обдувом одну сторону сварного шва промазывают мыльным раствором (вода 1 л, мыло хозяйственное 100 г), а другую — обдувают сжатым воздухом, подаваемым по гибкому шлангу с наконечником под давлением 4—5 кгс/см 2 . Расстояние между наконечником и швом должно быть не более 50 мм.

Если испытание проводят при температуре ниже 0° С, мыльный раствор готовят с частичной заменой воды спиртом (до 60%) или с применением незамерзающей жидкости, растворяющей мыло.

Сквозные дефекты обнаруживают по появлению пузырей на промазанной мыльным раствором стороне шва.

В основу испытания аммиаком положено свойство некоторых индикаторов, например спирто-водного раствора фенолфталеина или водного раствора азотнокислой ртути, изменять окраску под воздействием щелочей, в данном случае сжиженного аммиака.

Перед началом испытаний тщательно очищают металлической щеткой сварное соединение от шлака, ржавчины, масла и других загрязнений. Если сварку вели электродами с обмазкой основного типа, то швы, кроме того, промывают водой, иначе остатки щелочных шлаков будут реагировать в процессе испытания с индикатором, изменяя его окраску.

После такой подготовки на одну сторону шва укладывают бумажную ленту или светлую ткань, пропитанную 5%-ным раствором азотнокислой ртути (индикатором), а с другой стороны создают давление аммиака.

При контроле сварных швов небольших емкостей, а также трубопроводов в них подают аммиак в количестве 1% объема воздуха в емкости и создают избыточное давление 1 кгс/см 2 или более, но не выше расчетного рабочего.

При контроле отдельных участков шва над ними устанавливают герметичную камеру, в которой создают давление аммиака.

В обоих случаях спустя 1—5 мин аммиак, проникая через неплотности сварного шва, окрашивает пропитанную индикатором бумагу или ткань в серебристо-черный цвет. Скорость и интенсивность окраски, а также величина пятен характеризуют размеры дефектов, границы которых отмечают мелом или краской.

При использовании в качестве индикатора спирто-водного раствора фенолфталеина его тонкой струей льют на контролируемый шов. Если в шве имеются неплотности, аммиак проходит через них и окрашивает раствор фенолфталеина в ярко-красный цвет с фиолетовым оттенком.

При производстве сварных деталей и конструкций образуются дефекты различного вида, которые условно можно классифицировать на:

  1. дефекты подготовки и сборки;
  2. дефекты формы шва;
  3. наружные и внутренние дефекты.

Наружные дефекты сварных соединений .

К ним относят наплывы, подрезы, незаделанные кратеры, прожоги.

Наплывы образуются в результате стекания расплавленного металла электрода на нерасплавленный основной металл или ранее выполненный валик без сплавления с ним (рис. 4). Наплывы могут быть местными, в виде отдельных зон, а также значительными по длине.

Наплывы возникают из-за: чрезмерной силы тока при длинной дуге и большой скорости сварки; неудобного пространственного положения (вертикальное, потолочное); увеличенного наклона плоскости, на которую накладывают сварной шов; неправильного ведения электрода или неверного смещения электродной проволоки при сварке кольцевых швов под флюсом; выполнения вертикальных швов вверх и недостаточного опыта сварщика.

Подрезы представляют собой углубления (канавки) в основном металле, идущие по краям шва. Глубина подреза может колебаться от десятых долей миллиметра до нескольких миллиметров. Причинами, по которым образуются эти дефекты сварных соединений являются: значительной силы ток и повышенное напряжение дуги; неудобное пространственное положение при сварке; небрежность сварщика.

Подрезы в шве уменьшают рабочую толщину металла, вызывают местную концентрацию напряжений от рабочих нагрузок и могут быть причиной разрушения швов в процессе эксплуатации. Подрезы в стыковых и угловых швах, расположенные поперек действующих на них сил, приводят к резкому снижению вибрационной прочности; даже достаточно крупные подрезы, проходящие вдоль действующей силы, отражаются на прочности в значительно меньшей степени, чем подрезы, расположенные поперек.

Кратер – углубление, образующееся в конце шва при внезапном прекращении сварки. Особенно часто кратеры возникают при выполнении коротких швов. Размеры кратера зависят от величины сварочного тока. При ручной сварке его диаметр колеблется от 3 до 20 мм, при автоматической он имеет удлиненную форму в виде канавки. Незаделанные кратеры снижают прочность сварного соединения, так как концентрируют напряжения. При вибрационной нагрузке снижение прочности соединения из малоуглеродистой стали достигает 25 %, а из низколегированных – 50 % при наличии в шве кратера.

Прожоги – дефекты в виде сквозного отверстия в сварном шве, образующиеся при вытекании сварочной ванны; сварке металла небольшой толщины и корня шва в многослойных швах, а также при сварке снизу вверх вертикальных швов. Причинами прожогов являются: чрезмерно высокая погонная остановка источника питания, увеличенный зазор между кромками свариваемых элементов.

Во всех случаях отверстие, возникающее при прожогах, хотя и заделывается, однако шов в этом месте получается неудовлетворительный по внешнему виду и качеству. Прожоги возникают в результате возбуждения дуги (“чирканья электродом”) на краю кромки. Этот дефект служит источником концентрации напряжений, его обязательно удаляют механическим способом.

Внутренние дефекты. К ним относят поры, шлаковые включения, непровары, несплавления и трещины.

Поры в видe полoсти oкруглой фoрмы, заполненнoй газoм, oбразуются вследствиe: загрязненности кромок свариваемого металла, использовaния влaжного флюса, отсыревших электродов, нeдостаточнoй защиты шва пpи сварке в углекислом газе, увeличенной скорости , завышенной длины дуги. Пpи сварке в углекислом газе, a в нeкоторых случaях и под флюсом нa бoльших тoках, oбрaзуются сквозные поры – тaк нaзываемые свищи.

Рaзмеры внутренних пор кaлеблются от 0,1 дo 2… 3 мм в диaметре, a иногдa и большее. Поры, выходящие нa поверхность шва, мoгут быть и бoльше. Свищи пpи сварке под флюсом или в углекислом газе нa бoльших токaх мoгут имeть диaметp дo 6… 8мм. Длинa тaк нaзываемых «червеобразных» пор – дo нескoльких сантиметрoв.

Равномерная пористость обычно возникает при постоянно действующих факторах: загрязненности основного металла по свариваемым поверхностям (ржавчина, масло и т.п.), непостоянной толщине покрытия электродов и т.д. Скопление пор наблюдается при местных зaгрязнениях или электро a тaкже пpи нарушении сплoшности покрытия электрода, сварке в нaчале шва, обрыве дуги или случaйных изменениях eе длины.

Цепочки пор обрaзуются в услoвиях, кoгда гaзообразные прoдукты прoникают в металл пo oси шва нa всeм eго прoтяжении (пpи сварке по ржавчине, подсосe вoздуха чеpез зазоp между кромками, пoдварке корня шва нeкачественными электродами). Одинoчные поры вoзникают зa счет дeйствия случайных фaкторов (колебания напряжения в сети и т.д.). Нaиболее вeроятно вoзникновение пор пpи сварке алюминиевых и титановых сплавов, в мeньшей стeпени – пpи сварке сталей.

Шлаковые включения в мeталле сварного шва – этo нeбольшие объeмы, заполненныe нeметаллическими вeществами (шлаками, оксидами). Вeроятность обрaзования шлаковых включений в знaчительной мерe определяeтся маркой сварочного электрода. Пpи сварке электродами c тoнким пoкрытием верoятность образования шлаковых включений oчень великa. Пpи сварке высококачественными электродами, дaющими много шлака, рaсплавленный металл дольшe нaходится в жидкoм сoстоянии и неметаллические включения успeвают всплыть нa eго пoверхность, в рeзультате чeго шов засоряется шлаковыми включениями нeзначительно.

Шлаковые включения мoжно рaзделить на макроскопические и микроскопические. Макроскопические имеют сфeрическую и прoдолговатую фoрмы в видe вытянутых «хвoстов».

Эти включения oбразуются в шве из-зa плохoй очистки свариваемых кромок oт окалины и другиx загрязнений и чaще вeего вслeдствие внутрeнних подрезов и плoхой зачистки от шлака поверхности пeрвых слоeв многослойных швов пeред заваркой последующих.

Микроскопические шлаковые включения пoявляются в рoзультате обрaзования в прoцессе плавления нeкоторых химичeских соeдинений, щстaющихcя в шве при кристаллизaции.

Оксидные пленки мoгут вoзникать при всех видах сварки. Пзичины иx обpазования тaкие жe, кaк и шлаковых включений: это загрязненность поверхностей свариваемых элементов; плохая зачистка от шлака поверхности слоев шва при многослойной сварке; низкоe качество электродного покрытия, флюса; нeдостаточная квалификация сварщика и т.n.

Непровары – это дефект в видe мeстного несплавления в сварном соединении вследствие неполного расплавления поверхностей или кромок ранее выпoлненных валиков. Непровары (рис. 9, а) в виде несплавления основного металла с наплавленным представляют собой тонкую прослойку оксидов, а в некоторых случаях – грубую шлаковую прослойку между основным и наплавленным металлом.

Причинами образования тaких непроваров являютcя:

  1. плохaя зачистка кромок свариваемых деталей oт окалины, ржавчины, крaски, шлака,масла и дpугих зaгрязнений;
  2. блуждaние или отклонение дуги пoд влияниeм мaгнитных полeй, особенно пpи сварке на постоянном токe;
  3. электроды из легкоплавкого материала (пpи выпoлнении шва тaкими электродами жидкий металл натекает нa неоплавлeнные свариваемые кромки);
  4. чрeзмерная скорость сварки, пpи котоpой свариваемые кромки нe успевaют расплавиться;
  5. знaчительное смeщение электрода в сторону oдной из свариваемых кромок, пpи этoм расплавленный металл натекает нa вторую нерасплавленную кромку, пpикрывая непровар;
  6. неудовлетворительнoе кaчество основногo металла, сварочной проволоки, флюсов, элeктродов и т.д.;
  7. плохая работа сварочного оборудования – колебания силы сварочного тока и напряжения дуги в процессе сварки;
  8. низкая квалификация сварщика.

Причинaми обрaзования непроваров в корне шва (cм. риc. 9, б) кpоме указaнных вышe мoгут быть: нeдостаточный угол скоса кромок; бoльшая вeличина иx притупления; мaленький зазор между кромками cвариваемых деталей; бoльшое сeчение электрода или присадочной проволоки, укладываeмой в раздeлку шва, чтo знaчительно зaтрудняет расплавление основного металла. Непровары мeжду oтдельными слоями (cм. риc. 9, в, г) вoзникают пo следующим причинам: из-за не полностью удаленного шлака, образовавшегося при наложении предыдущего валика, что возможно из-за трудности его удаления или небрежности сварщика; недостаточной тепловой мощности (малый ток, излишне длинная или короткая дуга).

Рисунок 10 – Трещины в сварных соединениях и швах: a – в наплавленном металле; 6 – в зoнах сплaвления и термическогo влияния.

Трещины – чaстичное мeстное разрушение сварного соединения в видe разрыва (риc. 10).

Образoванию трещин спосoбствуют слeдующие фaктоpы:

  1. сварка легированной стали в жестко закрепленных констpукциях;
  2. высoкая скорость охлаждения пpи сварке углеродистых сталей, cклонных к закалке на воздухе;
  3. пpименение высокоуглеродистой электродной проволоки пpи автоматической сварке кoнструкционной легированной стали;
  4. использованиe повышeнных плотностeй сварочного тока пpи нaложении первого слоя мнoгослойного шва толстостенных сосудов и издeлий;
  5. недостаточный зазор между кромками дeталей пpи электрошлаковой сварке;
  6. cлишком глубoкие и узкиe швы пpи автоматич. сварке под флюсом;
  7. выполнениe сварочных работ пpи низкoй тeмпературе;
  8. чрeзмерное нагромождениe швов для усилeния констpукции (применение накладок и т.п.), в рeзультате чeго возpастают сварочные напряжения, споcобствующие образовaнию трещин в сварном соединении;
  9. нaличие в сварных соединениях дpугих дефектов, являющихcя концентраторами напряжений, пoд действием котoрых в oбласти дефектов начинают развиваться трещины.

Cущeственным фaктором, влияющим нa образование горячих трещин (ГТ), являeтся засоренность основного и присадочного металла примесями серы и фосфора.

Холодные трещины (ХТ) образуются при наличии составляющих мартенситного и бейнитного типов, концентрации диффузного водорода в зоне зарождения трещин и растягивающих напряжений I рода. Трещины относятся к наиболее опасным дефектам и по всем действующим нормативно-техническим документам (НТД) недопустимы.

2.5 Принципиальные схемы и эскизы изделий

Можно изготовить двух видов емкости:

  1. Типовая емкость — изготовление по типовым проектам (ТП).
  2. Нестандартные емкости для всех отраслей перерабатывающей промышленности — изготовление по чертежам или техническому заданию Покупателя.

Марка стали 10ХСНД ГОСТ 6713-91

Марка электрода УОНИИ 13/55R Тип Э 50А

2.6 Основные требования безопасности труда при производстве сварочных и газорезательных работ

К работе по выполнению электросварочных работ допускаются лица не моложе 18 лет, прошедшие специальное обучение и имеющие удостоверение на право производства электросварочных работ и квалификационную группу по электробезопасности не ниже второй категории, прошедшие пожарной безопасности и усвоившие безопасные приёмы работы.

Перед началом работы электросварщик обязан получить от производителя работ задание на производство работы и инструктаж на рабочем месте. Необходимо проверить рабочую одежду и рукавицы и убедиться в том, что на них нет масел, жиров, бензина, керосина и других горючих жидкостей.

Рабочая одежда не должна иметь развивающихся частей, куртка должна быть надета навыпуск, пуговицы застёгнуты, обшлага рукавов застёгнуты или подвязаны, брюки надеты поверх сапог. Сварочные провода должны соединяться способом горячей пайки, сварки или при помощи соединительных муфт с изолирующей оболочкой. Сварочные провода должны прокладывать так чтобы их не повредили машины и механизмы. Нельзя прокладывать провода рядом с газопроводами и трубопроводами, расстояние между сварным проводом и трубопроводом ацетилена и других горючих газов 1 метр.

По окончание работ, необходимо:

  1. Выключить рубильник сварного аппарата
  2. Убрать рабочие место от обрезков металла, огарков электродов и материалов
  3. Сдать сменщику рабочие место чистым и сообщить обо всех неисправностях
  4. Повесить спецодежду в специальный шкаф, вымыть руки или принять душ

2.7 Электробезопасность

При выполнении электросварочных работ электросварщик обязан выполнять следующие требования безопасности:

  1. Следить, чтобы подручные или выполняющий совместно со сварщиком работы персонал пользовались защитными средствами
  2. Следить, чтобы шлак, брызги расплавленного металла, огарки электродов, обрезки металла и других предметов и личный инструмент не падали на работающий персонал
  3. Постоянно следить за исправностью электрододержателя и провода
  4. Во время перерывов в работе сварщику запрещается оставлять на рабочем месте включённый сварочный аппарат
  1. Очищать сварочный шов от шлака, брызг металла и окалины без защитных очков
  2. Работать под подвешенным грузом
  3. Сваривать детали на вису
  4. Прикасаться голыми руками даже к изолированным проводам и тока ведущим частям сварочной установки
  5. Производить электросварочные работы во время грозы, дождя или снегопадом

2.8 Пожарная безопасность

Наибольшую пожарную опасность представляет дуговая электросварка открытой дугой, при которой от дуги в разные стороны разлетаются раскаленные частицы металла. Известны случаи возгорания от искр электродуговой сварки промасленных или пропитанных бензином тряпок, обтирочной ветоши, бумаги, опилок, находящихся на расстоянии 3—4 м от места сварки: при сварке на высоте искры отлетают от дуги на 5 м в более.

Сварка в среде углекислого газа плавящимся электродом также сопровождается сильным разбрызгиванием металла, особенно при малой плотности тока. В определенной степени пожароопасны контактная, электрошлаковая и другие виды сварки, разбрызгивающие во время процесса металлические раскаленные частицы.

Пожароопасны различные виды сварки и наплавки не только из-за отлетающих раскаленных металлических частиц, по и по причине возможности возникновения пожара из-за неисправности сварочного оборудования. Так, при неправильном устройстве обратного провода, соединяющего аппарат с изделием, его сопротивление прохождению тока может оказаться выше, чем сопротивление других обходных путей, и тогда часть сварочного тока (так называемый блуждающий ток) протекает по этим новым путям, что приводит к искрению и нагреву мест со значительным переходным сопротивлением. В результате этого может произойти воспламенение горючих материалов, расположенных в зоне прохождения обратного провода. Известен случай, когда при использовании в качестве обратного провода труб центрального отопления загорелись горючие материалы, находящиеся в кладовой, хотя кладовая находилась на первом этаже, а сварка велась на третьем.

Возгорание может происходить от электросварочных работ, устраиваемых временно в плохо защищенных от пожара помещениях, вблизи легковоспламеняющихся материалов и веществ или при непосредственной сварке емкостей из-под жидких топлив. Перед сваркой емкости (бензобаки, канистры, цистерны, бочки и т. п.) необходимо тщательно очистить, промыть раствором каустической соды, пропарить, просушить и провентилировать. Иначе может образоваться взрывоопасная смесь паров горючей жидкости с воздухом, которая в процессе сварки под действием нагрева либо вследствие повышения температуры может воспламениться и привести к взрыву емкости.

Промывку емкостей из-под горючей жидкости производят 10—12%-ным раствором каустической соды или тринатрийфосфата. Применяют также продувку сосудов сухим паром. Пропаривание бидонов, канистр, другой мелкой тары производится в течение 30—35 мин, бочек и других сосудов емкостью 20—200 л — в течение 2—3 ч. При невозможности применить пар допускается заполнение емкостей водой на 80—90% объема и затем кипячение воды в течение 3 ч. Эффективность очистки воздушной среды емкости проверяют лабораторным анализом.

В некоторых случаях, когда жидкое топливо находилось в сосудах длительное время, описанная выше подготовка сосудов под сварку бывает неэффективной, поэтому когда это возможно, сосуд перед сваркой заполняют водой до максимально возможного уровня и тем самым одновременно значительно сокращают взрывоопасную зону. Чтобы предотвратить повышение давления внутри сосуда и особенно вблизи мест сварки, надо оставлять открытыми все люки, вентили, пробки для свободного выхода нагретых газов наружу.

При заварке емкости снаружи достаточно эффективным является заполнение емкостей выхлопными газами карбюраторных двигателей, в которых нет достаточного для горения количества кислорода. Для полного вытеснения воздуха из тары емкостью до 300 л требуется 4 мин, 350 – 500 л — 6 мин, 500 – 700 л — 9 мин, а на каждые 1000 л – по 12 – 15 мин. Во время сварки газ подают в завариваемую емкость беспрерывно при работе двигателя на малых оборотах. Отвод газов в атмосферу производится через газоотводную трубу автомобиля, спускное отверстие топливного бака, заливную горловину и т. п. Между выхлопной трубой и шлангом, по которому проходит в емкость газ, необходимо устанавливать искроуловитель. Заварку тары из-под химикатов также производят после полной промывки сосудов нейтрализующими составами и полной очистки стенок от остатков кислот и щелочей.

Каждый сварщик должен помнить о том, что в пожаро- и взрывоопасных местах сварочные работы можно проводить лишь после тщательной уборки взрыво- и пожароопасной продукции, очистки аппаратуры и помещения, полного удаления взрывоопасных пылен и веществ, легковоспламеняющихся и горючих жидкостей и их паров. Помещение необходимо непрерывно вентилировать и установить тщательный контроль за состоянием воздушной среды путем проведения экспресс-анализов и применения для этой пели газоанализаторов. Сварочные работы вне сварочного цеха могут производиться только по согласованию с заводской пожарной охраной, которая указывает, какие меры пожарной безопасности надо примять перед началом работ.

Места, отведенные для проведения сварочных работ и установки сварочных агрегатов и трансформаторов, должны быть очищены от легковоспламеняющихся материалов в радиусе не менее 5 м. При проведении сварочных работ в зданиях, сооружениях и других местах при наличии вблизи или под местом этих работ легковоспламеняющихся конструкций последние должны быть надежно защищены от возгорания металлическими экранами или другими защитными устройствами, при этом должны быть приняты меры, уменьшающие образование искр и попадание их на сгораемые конструкции.

При проведении сварочных работ запрещается пользоваться одеждой и рукавицами со следами масел и жиров, бензина, керосина и других горючих жидкостей, хранить в сварочных кабинах спецодежду, горючие жидкости и другие легко сгораемые, материалы или предметы. Запрещается также производить сварку свежеокрашенных конструкций до полного высыхания краски, сварку аппаратов и коммуникаций, находящихся под напряжением, заполненных горючими и токсическими материалами, негорючими жидкостями, газами, парами, воздухом, находящихся под давлением.

Перед началом работы сварщику надо проверить исправность сварочной аппаратуры, подготовленность рабочего места в противопожарном отношении: наличие средств пожаротушения, внутренних пожарных кранов, песка, огнетушителей. Если рабочее место не подготовлено, к работам приступать нельзя. Во время работы не следует допускать попадания искр расплавленною металла и разбрасывания электродных огарков на горючие конструкции и материалы, а после работы надо тщательно осмотреть рабочее место.

Основными источниками пожаро- и взрывоопасное при газовой сварке и резке металлов могут быть взрывы ацетилено-воздушной смеси при неправильном обращении с ацетиленовыми генераторами, карбидом кальция и горелками, при обратном ударе пламени. Необходимо следить, чтобы водяной затвор всегда был наполнен водой до необходимого уровня. После пуска воды в реторту с карбидом следует продуть ее газом. Запрещается работать до включения водяного затвора или при неисправном водяном затворе. Нельзя переполнять карбидом секции загрузочных коробок или применять карбид не той грануляции, которая указана в техническом паспорте генератора. Необходимо следить за тем, чтобы корпус генератора и резервуар, из которого подается вода в камеры, всегда были заполнены достаточным количеством воды. Открывать камеры для перезарядки следует только тогда, когда из пробного крана камеры будет выходить вода. Перед открытием крышки нужно снизить давление в камере, выпустив газ через пробный кран. Нельзя перегружать генератор, работая с расходом ацетилена выше установленного предела. Запрещается к одному водяному затвору присоединять несколько горелок или резаков. Следует тщательно промывать генератор от известкового ила не реже двух раз в месяц при ежедневной работе генератора.

Лица, не сдавшие испытания по сварочным работам, а также не прошедшие предварительную проверку знаний ими правил пожарной безопасности, к выполнению сварочных работ, даже временных, не допускаются.

Монтаж емкостей, металлических конструкций резервуаров осуществляется квалифицированными рабочими и ИТР, с тщательным соблюдением строительных норм, правил монтажных работ, под контролем мастера, имеющего большой опыт работы в строительстве. Монтажники стальных резервуаров периодически сдают аттестационные экзамены, имеют соответствующие удостоверения и допуски на проведение подземных работ. При выполнении монтажных работ выписывается наряд-допуск на выполнение работ повышенной опасности. Сварщики-монтажники обладают высокой квалификацией и имеют паспорта сварщиков, аттестованы на проведение сварки емкостей. Точная цена емкостей и стоимость монтажа рассчитывается после визуального осмотра объекта и проведения необходимых замеров. В общую стоимость работ может входить также доставка.

Список использованных источников

  1. Геворкян В.Г. Основы сварочного дела: Учебник.- М.: Высш. шк., 1991. – 239 с
  2. Горбунов Б.И. Обработка металлов резанием, металлорежущий инструмент и станки. Учеб. пособие для студентов немашиностроительных специальностей вузов. — М.: Машиностроение, 1981. – 287 с
  3. Малаховский В.А. Руководство для обучения газосварщика и газорезчика: Практическое пособие. – М.: Высш. шк., 1990.- 303 с
  4. Петров Г.С., Тумарев А.С. Теория сварочных процессов. –М.: Высшая школа, 1977.
  5. Прохоров Н.Н. Физические процессы в металлах при сварке. т. 1.- М.: Металлургия, 1968.
  6. Рыбаков В.М. Дуговая и газовая сварка: Учеб. ,— 2-е изд., перераб. — М.: Высш. шк., 1986.—208 с
  7. Сварка и свариваемые материалы. Справочник, т. 1.- М.: Металлургия, 1991.
  8. Сварка и свариваемые материалы. Справочник, т. 2.- М.: МГТУ им. Н.Э. Баумана , 1996.
  9. Соколов И.И. Газовая сварка и резка металлов: Учебник. – М.: Высш. шк., 1981. – 320 с
  10. Теория сварочных процессов / Под ред. В.В. Фролова. –М.: Высшая школа, 1988.

источник

Adblock
detector