Меню Рубрики

Выводы по сварке металлов

ЗАКЛЮЧЕНИЕ

Сварка обладает значительным преимуществом по сравнению с ранее применявшимся в строительстве соединением частей конструкций при помощи клепки: уменьшается расход металла, повышается производительность труда, сокращаются сроки строительства и его стоимость.

Рассмотрена классификация способов сварки по физическим признакам. Основным физическим признаком сварки является вид энергии, используемой для получения сварного соединения. По физическим признакам все виды сварки делятся на три класса: термический, термомеханический и механический. Самым распространенным способом сварки плавлением является электрическая дуговая сварка. Она широко применяется в производстве металлоконструкций и изделий из различных металлов и сплавов малой и средней толщины, удобна при выполнении коротких и криволинейных швов в любых пространственных положениях, а также при наложении швов в труднодоступных местах. Ручная сварка остается незаменимой при монтажных и ремонтных работах в стационарных и полевых условиях, и при сборке конструкций сложной формы. Наиболее распространенным способом сварки давлением является контактная сварка. Контактная сварка находит широкое применение в промышленности, что обусловлено следующими её преимуществами: высокой производительностью; возможностью механизации процесса; возможностью соединения различных металлов и сплавов, а также разнородных металлов; минимальной деформацией свариваемых изделий.

Однако, наиболее перспективной с точки зрения качества сварного шва, экономичности, безопасности работы, сферы применения и условий эксплуатации, возможности автоматизации и набора материалов, которые можно сваривать, наиболее перспективна лазерная сварка. Причем число видов свариваемых металлов очень велико.

Процесс сварки легко поддается автоматизации, участие человека непосредственно в процессе сведено к минимуму, а значит влияние человеческого факта на качество изделия очень невелико.

источник

Заключение

Сварка является одним из ведущих технологических процессов обработки металлов. Сварка широко применяется в основных отраслях производства, потребляющих металлопрокат, т.к. резко сокращается расход металла, сроки выполнения работ и трудоёмкость производственных процессов. Выпуск сварных конструкций и уровень механизации сварных процессов постоянно повышается. Успехи в области автоматизации сварочных процессов позволили коренным образом изменить технологию изготовления важных хозяйственных объектов, таких как доменные печи, турбины, химическое оборудование.

Сварочная техника и технология занимают одно из ведущих мест в современном производстве. Свариваются корпуса гигантских супертанкеров и сетчатка человеческого глаза, миниатюрные детали полупроводниковых приборов и кости человека при хирургических операциях. Многие конструкции современных машин и сооружений, например космические ракеты, подводные лодки, газо- и нефтепроводы, изготовить без помощи сварки невозможно. Развитие техники предъявляет все новые требования к способам производства и к оборудованию, которое используется в процессе сварки.

Эффективность (повышение качества и производительности) технологических процессов сварки в большой мере зависит от технического уровня существующего и вновь создаваемого сварочного оборудования: сварочных аппаратов, установок и станков.

Ручная дуговая сварка в основном применяется при монтажных и ремонтных работах, а также в единичном и мелкосерийном производствах. При ручной дуговой сварке можно накладывать швы в любом пространственном положении; выполняются сварные соединения всех типов; применяемое оборудование отличается простотой, надежностью и небольшими габаритами.

Применение механизированной и автоматической дуговой сварки. Механизированной сваркой можно накладывать не только прямолинейные, но и криволинейные швы, а также швы небольшой длины в труднодоступных местах. Сваривают металл малой и средней толщины. Эти виды сварки применяются при различных работах, в том числе и ремонтных. При серийном производстве прямолинейные и кольцевые сварные швы длиной более 300 -500 мм целесообразно выполнять автоматической сваркой.

В транспортном машиностроении механизированная и автоматическая дуговая сварка применяются при производстве вагонов и локомотивов. Хребтовые балки сваривают на поточных механизированных линиях автоматами под флюсом. Рамы вагонов сваривают автоматами сваркой в углекислом газе на специально оборудованных кантователях. В тракторном и сельскохозяйственном машиностроении сваркой в углекислом газе выполняется до 75 % всех сварочных работ.

Автоматическая сварка под флюсом и в углекислом газе широко применяются в трубном производстве для изготовления прямошовных и спиралешовных труб большого диаметра.

Механизированная сварка под флюсом, в углекислом газе и порошковыми проволоками широко применяется при строительстве доменных печей, резервуаров для хранения нефтепродуктов, при строительстве мостов, в судостроении и т. д.

источник

Сварка металлов и сплавов

Определение сущности процесса сварки. Характеристика особенностей автоматической дуговой сварки под флюсом. Исследование основных преимуществ электрошлаковой сварки. Ознакомление с видами контактной сварки. Рассмотрение аппаратуры для газовой сварки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сварка металлов и сплавов


Сваркой называется технологический процесс получения неразъёмных соединений твёрдых материалов, который осуществляется за счёт использования межмолекулярных и межатомных сил сцепления.


Сварка широко применяется в современном машиностроении, строительстве для соединения металлов и их сплавов между собой и с неметаллическими материалами (керамикой, стеклом), а также для соединения пластмасс. Сварка является высокопроизводительным и экономически выгодным процессом обработки материалов.


Суть процесса соединения материалов путём сварки заключается в сближении соединяемых поверхностей на расстояние, в пределах которого начинают действовать силы межатомного сцепления. Это расстояние имеет порядок нескольких ангстрем (Ає=10 -8 см). Современные способы сварки для необходимого сближения поверхностей соединяемых деталей предусматривает тепловое и механическое воздействие на металл в зоне соединения.


1.2 Классификация способов сварки

В настоящее время насчитывается несколько десятков способов сварки и их разновидностей. Все они могут классифицироваться по двум признакам:

1. по методу объединения соединяемых поверхностей;

2. по виду применяемой энергии.

По первому признаку все сварочные процессы можно разделить на способы сварки плавлением и способы сварки давлением.

При сварке плавлением производится расплавление кромок свариваемых заготовок и присадочного материала для заполнения зазора между ними. Повышенная подвижность атомов материала в жидком состоянии приводит к объединению деталей в результате образования общей сварочной ванны. После затвердевания сварочной ванны и возникновения сварного шва образуется прочное соединение.

К способам сварки плавлением относится:

1. дуговая сварка (ручная, автоматическая под флюсом, газоэлектрическая и дуговой плазмой);

При сварке давлением соединение заготовок осуществляется путём совместной пластической деформации соединяемых поверхностей. Пластическая деформация осуществляется за счет приложения внешнего усилия. При этом металл в зоне соединения нагревают с целью повышения пластичности. В процессе деформации происходит снятие неровностей, разрушение окисных плёнок, в результате чего обеспечивается полный контакт между заготовками. Возникновение межатомных связей в этих условиях приводит к прочному соединению деталей.

К способам сварки давлением относится:

По виду применяемой энергии сварка может быть:

1. электрической (все виды дуговой сварки, электрошлаковая, контактная);

2. химической (газовая и термитная);

3. механической (кузнечная, холодная, трением, взрывом и ультразвуком);

4. лучевой (электроннолучевая, лазерным и солнечным лучом).

2. Электрическая дуговая сварка

2.1 Понятие об электрической дуге и характеристика основных способов сварки

Источником теплоты при дуговой сварке являются электрическая дуга, которая горит между двумя электродами, при этом одним электродом является свариваемая заготовка.

Сварочная дуга — это мощный электрический разряд в ионизированной газовой среде, который сопровождается выделением значительного количества тепла и света.

Процесс зажигания дуги при сварке состоит из 3-х периодов:

1. короткое замыкание электрода на заготовку;

2. отвод электрода на расстояние 3…6 мм;

3. возникновение устойчивого дугового разряда.

Короткое замыкание производится с целью разогрева торца электрода и основного металла в зоне контакта с электродом. После отвода электрода с его разогретого торца , являющегося катодом, под действием электрического поля начинается эмиссия электронов. Столкновение быстродвижущихся по направлению к аноду электронов с молекулами газов и атомами паров металлов приводит к их ионизации. В результате дуговой промежуток становится электропроводным и через него начинается разряд эл. тока. Процесс зажигания дуги заканчивается возникновением устойчивого дугового разряда.

Электрическая дуга является концентрированным источником теплоты с очень высокой температурой. Температура столба дуги достигает 6000єС, а температура анодного и катодного пятен — 2000…3000єС.

Однако не вся мощность дуги полностью расходуется на нагрев и расплавление электрода и основного материала, часть её теряется в результате теплоотдачи в окружающую среду. Так при ручной дуговой сварке потери мощности составляют 20%, примерно 30% мощности идет на нагрев и расплавление электрода, а остальные 50% расходуются на нагрев и расплавление основного материала.

В зависимости от материала и количества электродов, а также от способа включения электродов и заготовки в цепь электрического тока различают следующие способы дуговой сварки:

1. сварка неплавящимся электродом (способ Бенардоса) или вольфрамовым. Соединение осуществляется либо путём расплавления только одного основного металла, либо с применением присадочного материала.

2. сварка плавящимся электродом (способ Славянова). Электрод подается в сварочную дугу, расплавляется и наполняет сварочную ванну жидким металлом.

3. сварка дугой косвенного действия. Дуга горит между двумя плавящимися или неплавящимися электродами, основной металл нагревается и плавится теплом, излучаемым столбом дуги.

4. сварка трёхфазной дугой. Два электрода и деталь подключены к разным фазам трёхфазного тока. Дуга возникает между электродами, а также между каждым электродом и основным металлом.

2.2 Источники питания сварочной дуги

Для дуговой сварки используется как постоянный, так и переменный ток. Источниками постоянного тока являются генераторы постоянного тока и сварочные выпрямители — селеновые, германиевые и кремниевые.

Генераторы постоянного тока изготовляют стационарными и передвижными с приводом от электродвигателя и от двигателя внутреннего сгорания.

При сварке переменным током преимущественно используют сварочные трансформаторы, которые распространены шире, чем генераторы. Сварочные трансформаторы проще в изготовлении и эксплуатации , имеют небольшой вес и меньшую стоимость, более высокий кпд и значительно долговечнее.

Источники постоянного тока изготавливают однопостовыми и многопостовыми, а переменного только однопостовыми.

Производится сварочными электродами, подача которых в дугу и перемещение вдоль заготовки выполняется вручную рукой сварщика. Для удержания электрода и подвода к нему тока сварщик пользуется электрододержателем. Для защиты от светового и ультрафиолетового излучения дуги лицо сварщика закрывается предохранительным щитком или маской с тёмными стеклами, а тело и руки — брезентовой спецодеждой и рукавицами. Рабочее место сварщика помещается в специальной кабине.

Электроды для ручной сварки представляют собой проволочные стержни с нанесённым на них покрытием. Стержень электрода изготавливается из специальной сварочной проволоки повышенного качества, с пониженным содержанием P и S. ГОСТ предусматривает 56 марок проволоки диаметром 0,3…12 мм.

Схема процесса сварки следующая: дуга горит между стержнем электрода и основным металлом. Стержень плавится и расплавленный металл каплями стекает в сварочную ванну. Вместе со стержнем плавится покрытие электрода, образуя газовую защитную атмосферу вокруг дуги и шлаковую ванну на поверхности расплавленного металла. По мере движения дуги происходит затвердевание сварочной ванны и образование сварного шва. Жидкий шлак по мере остывания образует на поверхности шва твёрдую шлаковую корку.

Ручная дуговая сварка широко применяется в производстве металлоконструкций для сварки различных материалов малых и средних толщин (от 2…30 мм). Особенно она выгодна и удобна при выполнении коротких и криволинейных швов в любых пространственных положениях (нижнем, вертикальном, потолочном), а также при наложении швов в труднодоступных местах. Недостаток — низкая производительность.

2.4 Автоматическая дуговая сварка под флюсом

При этой сварке используется процесс, принципиально отличающийся от ручной сварки покрытыми электродами. Характерные особенности автоматической сварки заключается в следующем:

1. сварка ведётся непокрытой электродной проволокой;

2. защита дуги и сварочной ванны осуществляется флюсом;

3. подача и перемещение электродной проволоки механизирована.

Дуговая сварка под флюсом производится автоматическими сварочными головками или самоходными тракторами, перемещающимися непосредственно по изделию. Основным их назначением является подача электродной проволоки в дугу и поддержание постоянного режима сварки в течение всего процесса. Преимущества: повышение производительности сварки в 20…25 раз, повышение качества сварных соединений и уменьшение себестоимости 1 м сварного шва.

2.5 Полуавтоматическая дуговая сварка под флюсом

Отличается от автоматической тем, что перемещение электродной проволоки осуществляется вручную. Применяется для выполнения коротких и прерывистых швов, а также криволинейных швов, которые невозможно сварить автоматической сваркой.

Является принципиально новым процессом соединения металлов, при котором расплавление основного и электродного металлов осуществляется теплотой, выделяющейся при прохождении электрического тока через шлаковую ванну.

Процесс начинается с образования шлаковой ванны в пространстве между кромками основного металла и приспособлениями (ползунами), причём путём расплавления флюса электрической дугой. После накопления некоторого количества жидкого шлака дуга гаснет, а подача проволоки и подвод тока продолжается. При прохождении тока через шлаковую ванну выделяется теплота, достаточная для поддержания высокой температуры шлака и расплавления кромок основного металла и электродной проволоки. Проволока вводится в зазор и подаётся в шлаковую ванну с помощью мундштука и служит для подвода тока и пополнения сварочной ванны расплавленным металлом. Электрошлаковая сварка осуществляется при вертикальном положении свариваемых деталей.

1. повышение производительности вследствие непрерывности процесса сварки, выполняемой за один проход при любой толщине металла, увеличения сварочного тока в 1,5…2 раза, уменьшения расхода электродного металла;

2. повышение качества сварного соединения;

3. снижение затрат на 1 погонный метр шва в 10 и более раз.

Электрошлаковая сварка применяется в тяжёлом машиностроении для изготовления сварно-литых и сварно-кованных конструкций, таких как станины мощных прессов, коленвалы судовых двигателей, роторы и валы турбин.

Толщина свариваемого металла находится в пределах от 50…2000 мм.

2.7 Дуговая сварка в среде защитных газов

Суть способа заключается в том, что для защиты расплавленного металла от вредного воздействия кислорода и азота воздуха в зону дуги, которая горит между свариваемым изделием и плавящимся или неплавящимся электродами через сопло непрерывно подается струя защитного газа. В качестве защитных применяются инертные газы — аргон и гелий, активные — углекислый газ, водород, азот. Применяют также смеси аргона с кислородом, аргона с азотом, аргона с углекислым газом, углекислого газа с кислородом.

Инертные газы используются для сварки химически активных металлов (высоколегированные стали и цветные металлы).

В среде защитных газов применяется ручная и механизированная сварка неплавящимся электродом, а также автоматическая и полуавтоматическая плавящимся электродом.

1. отсутствие необходимости в применении обмазок и флюсов;

2. высокая степень концентрации источника теплоты, способствующая уменьшению коробления изделия;

4. возможность сварки в любых пространственных положениях.

3. Электрическая контактная сварка

3.1 Характеристика процесса

Контактная сварка выполняется как сварка давлением с осадкой разогретых заготовок. Разогрев заготовок производится прохождением по металлу электрического тока, причём максимальное количество теплоты выделяется в месте сварного контакта. Когда детали нагреваются до пластичного состояния или до оплавления, к ним прикладывается усилие осадки и детали свариваются. Время сварки в зависимости от толщины и вида сварочного материала колеблется от сотых долей секунды до нескольких минут.

3.2 Основные виды контактной сварки

Контактная сварка классифицируется по типу свариваемого соединения, определяющего вид сварочной машины, и по способу питания сварочного трансформатора.

По типу свариваемого соединения различают: стыковую, точечную и шовную (роликовую) сварку.

По способу питания сварочного трансформатора различают:

1. сварку переменным током в большинстве однофазным с частотой 50 гц;

2. сварку импульсом постоянного тока;

3. сварку аккумулированной энергией, из которой чаще всего применяют конденсаторную сварку.

Это вид контактной сварки, при котором заготовки соединяются в отдельных точках. Причём одновременно можно сварить одну, две или несколько точек. Их положение определяется расположением электродов точечной машины.

При точечной сварке заготовки соединяют внахлёстку и зажимают с усилием Р между двумя медными электродами, подводящими ток к месту сварки. Соприкасающиеся с медным электродом поверхности свариваемых заготовок нагреваются медленнее их внутренних слоев. Нагрев продолжают до пластического состояния или до расплавления внутренних слоев детали, затем выключают ток и снижают давление. В результате образуется литая сварная точка.

Точечная сварка широко используется для изготовления штампосварных соединений, когда отдельные штампованные детали соединяются сварными точками.

3.4 Шовная или роликовая сварка

Вид контактной сварки, при которой между свариваемыми заготовками образуется прочноплотное соединение.

При шовной сварке листы также соединяют внахлёстку и зажимают между медными роликами. При пропускании тока образуется сварная точка. Т. к. свариваемые листы проходят между вращающимися роликами, то эти точки перекрывают друг друга и получается сплошной герметичный шов.

Существует 2 цикла шовной сварки: с непрерывным и с прерывистым протеканием тока.

Первый цикл применяется для сварки коротких швов из малоуглеродистых и низколегированных сталей толщиной до 1 мм.

Второй цикл обеспечивает стабильность процесса и применяется для сварки длинных швов на заготовках из нержавеющих сталей, алюминиевых и медных сплавов.

Шовная сварка применяется в массовом производстве при изготовлении различных сосудов.

Вид контактной сварки, при которой заготовки свариваются по всей поверхности соприкосновения.

Стыковая сварка с разогревом стыка до пластического состояния и последующей осадкой называется сваркой сопротивлением, а при разогреве торцов заготовок до оплавления — сваркой оплавлением.

При первом способе заготовки, зажатые в машине, сжимаются небольшим усилием, обеспечивающим контакт свариваемых поверхностей. Затем включается ток, металл разогревается до пластического состояния производится осадка и сварка.

Сварка сопротивлением применяется для заготовок малого сечения (диаметр до 20 мм). Заготовки сложного сечения (лист, двутавр), а также из разнородных металлов этим методом не сваривают.

При втором способе различают сварку с непрерывным и прерывистым оплавлением.

При непрерывном оплавлении установленные в зажимах машины детали равномерно сближают при включенном напряжении. После достижения равномерного оплавления всей поверхности стыка производят осадку.

При прерывистом оплавлении зажатые заготовки сближают под током, приводят в кратковременное соприкосновение и вновь разводят на небольшое расстояние. Быстро повторяя одно за другим замыкание и размыкание, производят оплавление всего сечения. Затем делается осадка, в процессе которой выключают ток.

Методом оплавления можно сварить заготовки из разнородных материалов с сечением сложной формы без подготовки поверхности стыка.

Сущность газовой сварки заключается в том, что присадочный и основной металлы расплавляются за счёт теплоты газового пламени, получаемой при сгорании горючего газа в смеси с кислородом.

В качестве горючего газа применяется ацетилен, обладающий наибольшей теплотворной способностью по сравнению с другими горючими, но также используется водород, нефтяной газ, бензин, керосин.

Чаще всего газовую сварку применяют при изготовлении листовых или трубчатых конструкций из малоуглеродистых и низколегированных сталей толщиной до 3…5 мм, при исправлении дефектов в отливках из серого чугуна и бронзы, а также для сварки цветных металлов и их сплавов.

4.2 Аппаратура для газовой сварки

Промышленный способ получения ацетилена заключается в разложении карбида кальция в воде. Аппараты, в которых получают ацетилен, называются ацетиленовыми генераторами.

В зависимости от принципа взаимодействия карбида кальция (СаС2) с водой различают такие системы генераторов:

3. генератор контактной системы с вариантом “погружение” и “вытеснение”.

Генераторы бывают также низкого и среднего давления. Они могут быть стационарными и переносными.

Инструментом для газовой сварки являются сварочные горелки. Их различают по способу подачи горючего газа в камеру смешения — инжекторные и безинжекторные; по размеру и весу — нормальные и облегчённые; по числу сопел — односопловые и многосопловые.

Инжекторные горелки работают на ацетилене низкого и среднего давления от 0,01…0,5 кг/см 2 и при давлении кислорода 1…5 кг/см 2 .

Инжекцией наз. подсос ацетилена в камеру смешения струёй кислорода. Горелки этого типа имеют 7 сменных наконечников, служащих для регулирования мощности пламени.

Безинжекторные горелки отличаются от инжекторных тем, что питание от баллонов происходит через специальный редуктор выравнивающий давление ацетилена и кислорода.

4.3 Техника и режим газовой сварки

Различают два способа ведения сварочного процесса: правый и левый.

Сущность правого способа состоит в том, что пламя горелки перемещается слева направо и направлено на горячий металл шва, а присадочная проволока движется позади горелки. Этот способ применяется при толщине металла более 5 мм.

Левый способ сварки отличается тем, что пламя горелки перемещается справа налево и направленно на холодный металл, а присадочная проволока движется впереди горелки. Применяется при сварке листов из легкоплавких металлов и сплавов толщиной до 4 мм и вертикальных швов.

Режим газовой сварки определяется выбранным диаметром присадочного металла и мощностью газосварочного пламени. Диаметр присадочной проволоки (до 6…8 мм) зависит от способа сварки и толщины свариваемого металла. сварка электрошлаковый флюс

Термитами наз. порошкообразные смеси металлов с окислами металлов, которые, сгорая, выделяют значительное количество теплоты и развивают при этом высокую температуру.

Наиболее распространенными являются алюминиевый и магниевый термит.

Алюминиевый термит состоит из 23% порошка алюминия и железной окалины (Fe3O4) — 77%. Для воспламенения термита нужна высокая температура, поэтому зажигание его производят дугой, специальным запалом и термоспичками. Горение протекает быстро, в течение нескольких секунд, температура достигает 3000єС.

Существует 3 способа термитной сварки — способ промежуточного литья, сварка впритык и комбинированный способ сварки, которые могут осуществляться как с применением давления, так и без него.

Термитную сварку применяют при ремонте поломанных литых изделий, приваривания сломанных зубьев зубчатых колес.

Магниевый термит — порошкообразная смесь металлического магния и железной окалины.

Магниевый термит используется в основном для сварки стальных телеграфных и телефонных проводов воздушных линий связи.

Подобные документы

Сущность, особенности и области применения сварки под флюсом. Оборудование и материалы для сварки под флюсом. Технология автоматической дуговой сварки, ее главные достоинства и недостатки. Техника безопасности при выполнении работ по дуговой сварке.

реферат [897,7 K], добавлен 30.01.2011

Применение сварки под слоем электропроводящего флюса для автоматической сварки. Преимущества метода сварки под флюсом, ограничения области применения. Типичные виды сварных швов. Автоматические установки для дуговой сварки и наплавки, режимы работы.

книга [670,7 K], добавлен 06.03.2010

Классификация электрической сварки плавлением в зависимости от степени механизации процесса сварки, рода тока, полярности, свойств электрода, вида защиты зоны сварки от атмосферного воздуха. Особенности дуговой сварки под флюсом и в среде защитных газов.

презентация [524,2 K], добавлен 09.01.2015

Исследование основных видов термической обработки стали: отжига, нормализации, закалки, отпуска. Изучение физической сущности процесса сварки. Технологический процесс электродуговой и электрошлаковой сварки. Пайка и состав оловянно-свинцовых припоев.

реферат [193,4 K], добавлен 22.03.2013

Технология производства сварки. История развития сварочного производства. Специфика аргонно-дуговой сварки и сфера её использования. Применение, преимущества и недостатки аргонно-дуговой сварки. Сравнительная характеристика оборудования этого вида сварки.

реферат [635,2 K], добавлен 18.05.2012

Основные виды контактной сварки. Конструктивные элементы машин для контактной сварки. Классификация и обозначение контактных машин, предназначенных для сварки деталей. Система охлаждения многоэлектродных машин. Расчет режима точечной сварки стали 09Г2С.

контрольная работа [1,1 M], добавлен 05.09.2012

Описание физической сущности ручной дуговой сварки покрытым электродом. Физическая сущность процесса сварки. Основные и вспомогательные материалы, вредные факторы. Влияние химических элементов на свариваемость. Расчет параметров режима процесса сварки.

курсовая работа [530,4 K], добавлен 05.12.2011

Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.

лабораторная работа [1,1 M], добавлен 22.12.2009

Процесс ручной дуговой сварки электродами с основным видом покрытия и автоматической сварки порошковой проволокой в защитных газах. Расчет предельного состояния по условию прочности, времени сварки кольцевого стыка и количества наплавленного металла.

курсовая работа [167,8 K], добавлен 18.05.2014

Разновидности электрошлаковой сварки, ее достоинства и недостатки. Особенности многоэлектродной электрошлаковой сварки. Применение пластинчатых электродов для сварки. Сварка плавящимся мундштуком при сложной конфигурации изделия. Виды сварных соединений.

презентация [218,5 K], добавлен 13.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

источник

Дипломная работа: Технология изготовления сварной конструкции «Рама»

Сварочное производство в Старом Осколе

1.1 Краткая характеристика производства

1.2 Рабочее место сварщика

2.1 Назначение конструкции и описание сварочных швов

2.2 Материалы, применяемые для изготовления конструкции

2.3 Заготовительные операции

2.5 Выбор сварочного оборудования

2.7 Сварка конструкции (режимы сварки и сварочные материалы)

2.8 Контроль сварочных швов

2.9 Техника безопасности при сварочных работах

3.1 Охрана труда на предприятии и промышленная санитария

4.2 Расчет расхода сварочных материалов

Основоположниками сварки являются: В.В. Петров (1731-1834), Н.Н. Бенардос (1842-1905), Н.Г. Словянов (1854-1897).

В 1802 году впервые в мире В.В. Петров открыл и наблюдал дуговой разряд от постоянного и сверхмощного вольтового столба. Этот столб или батарея как называл его Петров, был наиболее мощным источником в то время. Спустя 80 лет Н.Н. Бенардос в 1881 году впервые применил Электрическую дугу между угольным электродом и металлом для сварки.

Почти одновременно с Бенардосом работал другой российский ученый Н.Г. Словянов. Словянов разработал способ дуговой сварки металлическим электродом и защитной сварочной зоны слоем флюса и первый в мире механизм «Электроплавильник – для полуавтоматической подачи электродного прутка в зону сварки. Способ сварки получил название: дуговая сварка по способу — Словяного. Первая демонстрация состоялась в 1882 году. В настоящее время существует большое количество устройств для сварки, например: полуавтомат для дуговой сварки в защитных газах, при котором проволока подается автоматически, а передвижение горелкой производится вручную. Сварочный автомат в этом случае проволока и передвижение горелкой производится автоматически. Газовая сварка – при этом способе детали свариваются пламенем, которое образуется при сгорании газов или паров горючих жидкостей.

Лазерная, плазменная, с дистанционным управлением, подводная сварка.

Сварочное производство в Старом Оскол е

В Старом Осколе сварочное производство представлено на заводах: БСК, ЗВЗ, ЗЭМЗ, ВММЗ, МКМ, ОЭМК, ЦМЗ, СГОК, КПД, ЖБИ, строительно-монтажных управлениях и ремонтная сварка в различных организациях.

Завод Электромонтажных Заготовок – выпускает шкафы электрооборудования, столбы для освещения, товары народного потребления, используя ручную сварку и контроль.

Завод вентиляционных заготовок выпускает воздуховоды, ворота для гаражей. Используется сварка ручная дуговая, полуавтоматическая плавящимся электродом в среде углекислого газа, контролируется сварка.

Воронежский механомонтажный завод выпускает нестандартное оборудование для монтажных организаций и госзаказы. Применяется ручная дуговая и контактная сварка, сварка в среде защитных газов, а также сварка плавящимся электродом.

Цех металлоконструкций (ЦМК), Оскольский электрометаллургический комбинат и Стойленский горно-обогатительный комбинат – выпуск нестандартного оборудования, металлоконструкций, для ремонта основного оборудования.

Применяется ручная, дуговая и полуавтоматическая сварка в среде защитных газов плазменная резка.

Завод крупнопанельных деталей – изготовление железобетонных конструкций. Применяется ручная дуговая сварка, контактная сварка и контактная сварка под флюсом.

Белгородстальконструкция – производит металлоконструкции для собственных нужд. Применяется ручная дуговая и полуавтоматическая сварка.

В остальных цехах, при ремонтных работах используют ручную дуговую сварку, сварку исплавящимся электродом в среде защитных газов, наплавка автоматом под слоем флюса, плазменное напыление.

1.1 Краткая характеристика производства

В мастерской изготавливают и сваривают ворота, решетки, контейнеры, также выполняется резка уголка, листов разных размеров и толщин. В мастерской применяют ручную дуговую сварку, есть также газовая сварка и резка. На заготовительном участке применяются механические ножницы. Сварные работы выполняются для нужд лицея, а также выполняются заказы города.

1.2 Рабочее место сварщика

Рабочее место сварщика должно быть расположено в специальных сварочных кабинках или непосредственно у сварочного изделия. Сварочная кабина должна иметь размер 2:3 метра, каркас должен быть металлический, стены кабины высотой 2 метра, расстояние от пола 300 мм., стены сделаны из стали или другого несгораемого материала, стены окрашивают в светлые тона огнестойкой краской, дверной проем закрывают брезентовым занавесом. В кабине должна стоять местная вентиляция, внутри кабинки должен стоять стол высотой 500-600 мм., для работы, сидя 900 мм., для работы, стоя к столу приварен болт, служащий для заземления, также должен быть шкафчик для необходимых инструментов и документаций, для удобства работы устанавливают винтовой стул. Все оборудование кабины должно быть заземлено.

2.1 Назначение конструкций и описание сварочных швов

Конструкция «рама» представляет собой объёмную пространственную конструкцию, предназначенную для объединения отдельных деталей и механизмов в единый агрегат. Одной из главных требованье, предъявляемых к рамам,– жоскость конструкции. Сварной шов – это участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла. Швы классифицируют по следующим признакам:

1) По типу сварного соединения:

а) Стыковые – обозначаются буквой: С.

б) Угловые — обозначаются буковой: У.

в) Тавровые — обозначаются буквой Т.

г) Нахлесточное – обозначаются буквой: Н.

2) По положению в пространстве: а) в нижнем положении, б) вертикальное положение, в) горизонтальное положение, г) Потолочное положение, д) Кольцевой шов.

3) По форме наружной поверхности: а) нормальный шов; б) усиленный или выпуклый шов; в) ослабленный или вогнутый шов.

4) По протяженности: а) сплошной, б) прерывистый (цепной в шахматном порядке).

5) По заполнению сечения: а) однослойный однопроходный; б) многослойный, в) многослойный многопроходный; г) двухсторонний.

6) По отношению к направлению действующих сил: а) фланговый, б) лобовой;

в) косой; г) комбинированный.

Согласно чертежу «рама» выполняется сварными швами:

Нахлёсточное соединение без скоса кромок, однастороний прерывистый, катит шва 1 мм.,

Выполнен ручной дуговой сваркой

Гост 5264-80-Т1 4

Тавровое соединение, односторонний без скоса кромок катит шва 1 мм.,

Выполнен ручной дуговой сваркой.

Тавровое соединение, односторонний без скоса кромок катит шва 1 мм.,

Выполнен ручной дуговой сваркой.

Тавровое соединение со скосом одной кромки, однастороний.,

Выполнен ручной дуговой сваркой

2.2 Материалы, применяемые для изготовления конструкций

Сталь – это сплав железа с углеродом.

Сталь классифицируется по некоторым признакам:

1)По химическому составу: а) углеродистые содержание углерода более 0,25%.

Среднеуглеродистые содержание углерода от 0,25 до 0,6%, высокоуглеродистые содержание углерода от 0,46 до 0,7%; б) легированные – низколегированная содержание легирующих элементов до 2,5%. Среднелегированная содержание легирующих элементов от 2,5 до 10%. Высоколегированная содержание легирующих элементов более 10%.

2) По применению: а) конструкционная; б) инструментальная; в) специальная.

3) По качеству: а) обыкновенного качества – 0,025% примесей; б) качественная – 0,15% примесей; в) высокого качества – 0,015% примесей; г) особо высокого качества — > 0,015% примесей. Качество стали, зависит от содержания примесей (сера, фосфор, кислород).

4) По степени раскисления: а) кипящая (КП) – не раскисленная сталь, б) спокойная (СП) – застывает спокойно; в) полуспокойная (ПС) – частично раскисленная. При изготовлении рамы использовалась сталь марки Ст3сп: сталь конструкционная низкоуглеродистая, обыкновенного качества, степень раскисления спокойная.

2.3 Заготовительные операции

К заготовительным операциям относят: очистку, гибку, резку, правку, мех. обработку.

Правка необходима для выправления проката. Правка производится путем пластического изгиба или растяжения. Оборудование для правки делят на: ротационные машины, прессы растяжные, правильные машины.

1) Ротационные машины: листоправильные, многоволковые, сортоправильные, многороликовые машины.

2) Прессы бывают винтовые, гидравлические, кривошипные.

Гибка: ее выполняют путем пластического изгиба заготовок. По принципу действия оборудование для гибки делят на: ротационные машины и прессы. К ротационным машинам относят: листогибочные, профилегибочные многоволковые станы, зибовочные машины, сортогибочные роликовые машины, трубогибочные машины. Прессы предназначены для гибки различных профилей из листового и полосового материала, на прессах можно выполнить пробивку отверстий, штамповочные операции.

Очистка: её применяют для удаления с поверхности листа средств консервации, загрязнений ржавчины окалины, заусенцев, шлака, которые затрудняют процесс сварки, вызывают дефекты сварных швов и препятствуют нанесению защитных покрытий, для очистки деталей применяют механическую и химическую очистку. К механическим относят: дробеструйную, дробемётную, пескоструйную, на зачистных станках, галтовочных барабанах. К химическим методам относят: обезжиривание, ванный или струйный способ.

Резка. При изготовлении деталей применяют следующие виды резки ножницами на отрезных станках, штампах, на прессах, термическую резку. Ножницы используют при резке листов фасонного профиля малых толщин. Ножницы бывают: однодисковые с наклонным ножом, прессножницы. Отрезные станки применяют для резки труб фасонного и сортового профиля. Термическую резку (газовая и дуговая резка) применяют для резки тугоплавких металлов листового материала и труб большого диаметра.

Механическая обработка. В производстве деталей сварных конструкций металлорежущие станки применяют для выполнения операций сверления отверстий, обработок кромок и поверхностей. Для сверления применяют сверлильные станки, радиальносверлильные, вертикальносверлильные. Многошпиндельные кромки и поверхности обрабатывают на кромкострогальных, продольнострогальных станках, цилиндрические обечайки на токарнокарусельных станках.

Перед изготовлением деталей используют следующие технологические операции: разметку, резку, штамповку, зачистку, правку, подготовку кромок.

Разметка состоит в нанесении на металл конфигурации заготовки с припуском. Припуск – это разность между размером заготовки и чистовым размером детали. Припуск снимают при последующей обработке. Для разметки применяют разметочные столы или плиты необходимых размеров.

Резку выполняют кислородными резаками по намеченной линии контура детали вручную или газорезательными машинами специального назначения. Резка на металлических станках более производительна и дает высокое качество реза. Для механической прямолинейной резки листового металла применяют прессножницы.

Штамповку заготовок проводят в холодном или горячем состоянии. Стальные листы толщиной до 6-8 мм. штампуют в холодную. Для металла толщиной 8-10 мм. применяют штамповку с предварительным подогревом.

Металл зачищают для удаления заусенцев с кромок деталей после штамповки, а также для удаления с поверхности кромок окалины и шлаков после кислородной резки. Для зачистки мелких деталей используют стационарные установки с наждачными кругами. Крупногабаритные детали зачищают переносными пневматическими или электрическими шлифмашинами.

Детали и заготовки при их искривлении в процессе кислородной резки или резки на механических ножницах правят на листоправильных вальцах или вручную на плите. Правку тонколистового металла проводят в холодном состоянии на листоправильных вальцах или прессах, толстолистового металла – в горячем состоянии вручную на правильных плитах.

Подготовку свариваемых кромок деталей большой толщины выполняют кислородной резкой или обработкой на строгальных или фрезерных станках, для подготовки тонколистового металла используют кромкогибочные прессы или специальные станки. Гибку деталей и заготовок проводят на металлогибочных вальцах. Здесь же изготавливают обечайки для сварки различных емкостей цилиндрической формы. Согласно чертежу производится скос одной кромки под углом 45* сварной шов.

2.5 Выбор сварочного оборудования

В качестве источника питания для Электрической дуги применяют «Трансформатор», «Выпрямитель», «Преобразователь».

Сварочный трансформатор предназначен для положения напряжения сети до необходимого рабочего напряжения и регулировки силы сварочного тока. Он состоит из: корпуса, сердечника, первичной и вторичной обмотки, переключателя ступеней, токоуказательного механизма.

Сварочный выпрямитель представляет собой устройство, предназначенное для преобразования переменного тока в постоянный.

Он состоит из: силового трансформатора, блока силовых вентилей, стабилизирующего дросселя, блока защиты, системы управления вентилями.

Сварочный преобразователь – это машина, служащая для преобразования переменного тока в постоянный сварочный ток.

Преобразователь состоит из: генератора постоянного тока и приводного трехфазного двигателя, находящихся на одном валу и в одном корпусе.

При изготовлении «рамы» я буду использовать выпрямитель ВДУ-601 – Выпрямитель дуговой универсальный номинальная мощность которого 600 Ампер номер модификации 1.

Номинальная мощность- 69 А.

Сила номинального сварочного тока — 630 А.

Придел регулирования сварочного тока — 100-700 А.

Напряжение холостого хода – 90 В.

Номинальное рабочее напряжение — 66В.

Габаритные размеры – 1250 х 900 х 1155 мм. Масса — 59,5 кг.

Сборка – это технологическая операция, обеспечивающая подлежащими сварке деталями необходимое взаимное расположение с закреплением их специальными приспособлениями или прихватками.

Существуют следующие приспособления для сборки:

1) сборочно-сварочная плита – опорное приспособление в виде горизонтальной металлической плиты с пазами;

2) стеллаж – опорное приспособление с плоской горизонтальной поверхностью для размещения крупногабаритных изделий в цехе;

3) сборочно-сварочные стенды – устройства для размещения деталей собираемых и свариваемых крупногабаритных изделий и фиксаций их в нужном положении.

Основой сборочного приспособления является жесткий каркас, несущий упоры фиксаторы и прижимы. При сборке детали заводят в приспособления, укладывают по упорам и фиксаторам и закрепляют пружинами.

Последовательность выполнения сборочно-сварочных операций может быть различной:

— Сварку выполняют после полного завершения сборки.

— Сборку и сварку производят переменно, например, при изготовлении конструкций наращиванием отдельных элементов.

— Общей сборке и сварке конструкций предшествует сборка и сварка узлов.

Под режимом сварки понимают – совокупность параметров, которые обеспечивают устойчивое горение дуги, получение сварочных швов заданных размеров, формы и качества. Существуют главные параметры и дополнительные параметры.

К главным параметрам относятся: 1) сила сварочного тока; 2) напряжение дуги; 3) скорость сварки.

К дополнительным относятся: 1) диаметр электрода; 2) тип и марка электрода; 3) род и полярность сварочного тока; 4) пространственное положение шва.

Определение режимов сварки для рамы:

1) По толщине металла определяем диаметр электрода (dэл ), так как толщина металла, из которого изготавливается спираль равна 10 мм., значит, будем использовать электрод диаметром 4 мм.

2) Сила сварочного тока J(А) равна: по формуле Jсв =dэл ·k, рассчитываем силу сварочного тока. k – коэффициент пропорциональности зависит от диаметра электрода. Jсв = 30·dэл =30·4=120 А.

3) Напряжение на дуге (Uд ) при ручной дуговой сварке будет равно 24В.

4) Скорость сварки (Uсв ) зависит от квалификации сварщика и толщины свариваемого металла.

5) Род тока и полярность устанавливаются в зависимости от вида свариваемого металла и от его толщины, при сварке постоянным током обратной полярности на электроде выделяется больше теплоты. Обратная полярность применяется при сварке тонкого металла и при сварке высоколегированных сталей, чтобы не было перегрева.

6) Положение шва в пространстве при ручной дуговой сварке можно производить по всех пространственных положениях.

При сварке рамы, применяются электроды:

УОНИ 13/45- марка электрода

У – для углеродистой стали

Е-412(3) – группа индексов, характеризующая механические свойства

Существуют различные методы контроля сварных швов: гидравлические, пневматические, вакуумные, керосиновый. Сварные швы рамы контролируются внешним осмотром. Он заключается в том, что это простейший и не обходимый способ проверки качества сварки в готовом изделий. Внешний осмотр выявляет несоответствие шва требуемых геометрическим размерам, наплывы подрезы, прожоги. Размеры швов должны соответствовать указным на чертеже. Не допускается какое бы ни было уменьшение фактического размера шва по сравнению с заданным размером. При выявлений наружных дефектов (поры, трещины)–нужно удалить шлак, зачистить место сварки удалить поры и трещины с помощью горелки или шлифмашинки, а после удаления и зачистки переварить шов сначала

2.9 Техника безопасности при сварочных работах

Все сварочные работы должны выполняться в соответствии с требованиями «Правил безопасности при работе с инструментом и приспособлениями».

К электросварочным и газосварочным работам допускаются лица не моложе 18 лет, прошедшие специальную подготовку и проверку теоретических знаний, практических навыков, знаний по технике безопасности и имеющих удостоверение сварщиков. Все сварщики должны проходить проверку знаний инструкции по охране труда.

Проходы между источниками сварочного тока должны быть не менее 0,8 м. Проходы между группами сварочных трансформаторов должны иметь ширину не менее 1 м. Запрещается установка сварочного трансформатора над регулятором тока.

Запрещается производство электросварочных работ во время дождя и снегопада, при отсутствии навесов на электросварочным оборудованием и рабочим местом. При электросварочных работах в сырых местах сварщик должен находиться на настиле из сухих досок или на диэлектрическом ковре.

При любых отлучках с места работы сварщик обязан отключить сварочный аппарат. При электросварочных работах сварщик должен пользоваться индивидуальными средствами защиты: щиток, служащий для защиты лица и глаз, рукавицы для защиты рук. Одежда должна быть из несгораемого материала с низкой электропроводностью, кожаные ботинки.

При газосварочной работе запрещается хранить баллоны с кислородом в одном помещении с баллонами для горючих газов, а также с карбидом кальция, красками и маслами (жирами). Баллоны необходимо перемещать на специальных тележках, контейнерах и других устройствах, обеспечивающих устойчивое положение баллонов. Запрещается переноска баллонов на плечах и руках. Баллон с утечкой газа не должен применяться для работы или транспортирования.

Запрещается подогревать баллоны для увеличения давления. При проведении газосварочных работ запрещается курить и пользоваться открытым огнем на расстоянии менее 10 метров от баллонов с газом. Общая длинна шлангов должна быть не более 30 м. До присоединения шланга к горелке, его необходимо продуть рабочим газом. Каждые пять лет баллон для газа должен проходить освидетельствование. По окончанию работы вентили баллонов должны быть закрыты.

3.1 Охрана труда на предприятии и промышленная санитария

Сварочные работы относятся к категории работ с повышенной степенью опасности, что обуславливает повышенные требования к организации рабочих мест, обслуживанию аппаратуры и оборудования. Нарушение этих требований запрещено, чтобы избежать травматических случаев (отравлений газом, поражения электрическим током и др.). Сварщику при выполнении работ приходится работать при электрическом токе силой свыше 1000А и напряжении от 24 до 220/380В. Применяемые при газовой сварке, наплавке и резке металлов кислород и горючие газы подаются к месту работы в сжатом состоянии, чаще под высоким давлением. Горючие газы, смешиваясь с воздухом или кислородом, взрываются от искры любого происхождения, открытого пламени, нагретого тела и других тепловых импульсов. Широко используемый газ – ацетилен, даже если отсутствует кислород и воздух, взрывоопасен. Серьезная опасность возникает при получении ацетилена в специальных генераторах на месте производства работ.

Высокой химической активностью обладает кислород, находящийся под большим давлением в баллоне, особенно при соприкосновении с различными маслами и жирами – животными, минеральными и растительными. Резка металлов сопровождается выбросом из места резки большого количества расплавленного металла и шлака.

Все это делает место выполнения сварочных работ зоной повышенного риска.

При электросварочных работах проходы между однопостовыми источниками сварочного тока для сварки плавлением, резки, наплавки должны иметь ширину не менее 0,8 м., между многопостовыми источниками – не менее 1,5 м., расстояние от одно- и многопостовых источников сварочного тока до стены должно быть не менее 0,5 м.

Регулятор сварочного тока может размещаться рядом со сварочным трансформатором или над ним. Запрещается установка сварочного трансформатора над регулятором тока.

Запрещается производство электросварочных работ во время дождя и снегопада при отсутствии навесов над электросварочным оборудованием и рабочим местом.

При электросварочных работах в производственных помещениях рабочие места сварщиков должны быть отделены от смежных рабочих мест и проходов несгораемыми экранами (ширмами, щитами) высотой не менее 1,8 м.

При электросварочных работах в сырых местах сварщик должен находиться на настиле из сухих досок или на диэлектрическом ковре.

При электросварочных работах сварщик и его подручные должны пользоваться индивидуальными средствами защиты: защитной каской из токонепроводящих материалов, которая должна удобно сочетаться со щитком, служащим для защиты лица и глаз: защитными очками с бесцветными стеклами для предохранения глаз от осколков и горячего шлака при зачистках сварочных швов молотком или зубилом; рукавицами с крагами или перчатками, специальной одеждой из искростойких материалов с низкой электропроводностью, кожаными ботинками.

Причинами пожара при сварочных работах могут быть искры и капли расплавленного металла и шлака, неосторожное обращение с пламенем горелки при наличии горючих материалов вблизи рабочего места сварщика.

Для предупреждения пожаров необходимо соблюдать следующие противопожарные меры: нельзя хранить вблизи от места сварки огнеопасные или легковоспламеняющиеся материалы, а также производить сварочные работы в помещениях, загрязненных промасленной ветошью, бумагой, древесными отходами;

Запрещается пользоваться одеждой и рукавицами со следами масел, жиров, бензина, керосина и других горючих жидкостей; нельзя выполнять сварку и резку свежевыкрашенных масляными красками конструкций до полного их высыхания;

Запрещается выполнять сварку аппаратов, находящихся под электрическим напряжением, и сосудов, находящихся под давлением.

Нужно постоянно иметь противопожарные средства – огнетушители, ящики с песком, лопаты, ведра, пожарные рукава и следить за их исправным состоянием, а также содержать в исправности пожарную сигнализацию; после окончания сварочных работ необходимо выключить сварочный аппарат, а также убедиться в отсутствии горящих или тлеющих предметов.

1. Начальник цеха несет ответственность за штатное расписание:

-непосредственно обеспечивает руководство всей работы по выполнению планового задания, охране труда, техники безопасности, чтобы все рабочие места были укомплектованы рабочими единицами;

-производит анализы безопасности производственного оборудования и трудовых процессов, применяет меры к повышению уровня их безопасности;

-ежедневно в санитарном рапорте докладывает о нарушениях и устранении причин нарушений;

-проверяет работу по охране труда и принимает меры дисциплинарного взыскания;

-контролирует качество работы, проверяет состояние документации по инструкции рабочих в цехе;

-контролирует наличие и систематическое обновление наглядной аппаратуры по охране труда на участке и рабочих местах.

2. Заместитель начальника цеха:

-отвечает за выполнение заданий, запланированных работ по участкам, за технику безопасности, за исправность оборудования, следит за качеством и своевременным выполнением заданий.

— следит за исправностью источников питания;

— наблюдает за ходом сварки;

— отвечает за технику безопасности на своем участке, несет ответственность за выполнение запланированных работ.

· назначает разряд сварщикам;

· следит за качеством выполняемой работы;
следит за техникой безопасности непосредственно при выполнении какой- либо работы на участке;

· докладывает о проделанной в течение дня работе.

4.2 Расчет расхода сварочных материалов

Для расчета расхода электродов необходимо:

1) Взять пластину длинной L – 100 мм. и массой 250 г.

2) Затем необходимо узнать количество электродов в пачке и вес электродов; количество электродов в пачке составляет 90 штук, а вес электродов 400 г.

3) Рассчитываем массу одного электрода: 4000:90=45 г.

4) После этого наплавляем один электрод на пластину и взвешиваем ее, вес пластины стал 275г, то есть увеличился на 25г, а вес электрода равен 45г.

Вычисляем количество электродов, которые мы потратили на пластину длинной 100 мм.

45 г. = 1 эл. эл.

25 г. = эл.

Находим количество электродов, которое понадобится для сварки пластины длинной 1м.

1000мм.=эл.

100= 0,5·1000=500

= 5эл – на 1 м.

Это значит, что для сварки пластины длинной 1м. понадобится 5 электродов.

Дипломная работа выполнена по теме:

«Технология изготовления сварной конструкции «Рама»

В водной части дипломной работы охарактеризованы основные виды сварки плавлением, их сущность и способы применения. Представлено развитие сварочного производства в настоящее время.

В общей части представлена классификация сварочных постов в зависимости от вида сварки и вспомогательного оборудования, инструмент и принадлежности сварщика. Основные технологические операции ручной дуговой сварки раскрыты в специальной части. Мной указан и аргументирован выбор сварочных материалов, предназначенных для сварки конструкции, произведен расчет основных параметров сварки, предложены методы и способы контроля качества сварного соединения. Особое внимание уделено вопросам, касающихся техники безопасности, гигиены труда и производственной санитарии.

В экономической части мной произведен расчет сварочных материалов. Представлена схема структуры управления цехом.

Выполняя дипломную работу, закрепил теоретические и практические знания.

1. Виноградов В.С. «Оборудование и технология дуговой автоматической и механизированной сварки»

2. Маслов В.И. «Сварочные работы»

3. Попов В.А «Дуговая и газовая сварка сталей»

4. Чернышов Г.Г. «Сварочное дело»

5. Кобзев В.А., Коваленко В.В. «Сварочные трансформаторы»

источник

Adblock
detector
Название: Технология изготовления сварной конструкции «Рама»
Раздел: Промышленность, производство
Тип: дипломная работа Добавлен 11:44:34 18 сентября 2009 Похожие работы
Просмотров: 30862 Комментариев: 16 Оценило: 19 человек Средний балл: 3.8 Оценка: 4 Скачать